Алексей Викторович Пенской
Дифференциальная геометрия
Листки
Решения задач из листков сдаются очно на семинарах после лекций. Сдавать можно задачи из любых листков. Для получения зачета нужно решить не менее половины всех задач.
Программа курса
- Кривые в плоскости и в пространстве. Кривизна, кручение, репер Френе.
- Поверхности в трехмерном пространстве. Первая и вторая квадратичные формы. Главные кривизны, средняя и гауссова кривизна. Нормаль средней кривизны. Формула Эйлера для кривизны нормального сечения.
- Поверхности в n-мерном евклидовом пространстве. Первая и вторая квадратичные формы. Связности в касательном и нормальном расслоениях к поверхности. Вторая квадратичная форма и оператор Вейнгартена. Деривационные уравнения Гаусса-Вейнгартена. Теорема Гаусса-Бонне для поверхностей.
- Векторные расслоения. Склеивающие коциклы. Структурная группа. Евклидовы и эрмитовы расслоения. Естественные операции с расслоениями. Ориентируемые расслоения.
- Связности в векторных расслоениях. Локальное задание связности: локальная форма связности, символы Кристоффеля. Кривизна. Связности в евклидовых и эрмитовых расслоениях. Связности, согласованные с метрикой и их кривизна.
- Связности в главных расслоениях.
- Римановы многообразия. Кручение, кривизна. Связность Леви-Чивиты. Симметрии тензора кривизны. Тензор Риччи. Скалярная кривизна.
- Римановы многообразия II. Геодезические. Геодезические координаты. Лагранжево описание геодезических. Вторая вариация.
- Подмногообразия римановых многообразий. Первая и вторая квадратичные формы.
- Оператор Лапласа-Бельтрами на римановых многообразиях.
- Характеристические классы. Конструкция Чженя-Вейля характеристических классов. Классы Чженя, Понтрягина и Эйлера и их свойства. Характер Чженя и его свойства.
- Расслоения и их когомологии. Класс Тома. Конструкция класса Тома по Матаи-Квиллену. Связь класса Тома и класса Эйлера. Теорема Гаусса-Бонне.