Алексей Викторович Пенской
Дифференциальная геометрия
Экзамен
Экзаменационное задание 1 Экзаменационное задание 2
Листки
Решения задач из листков сдаются очно на семинарах после лекций. Сдавать можно задачи из любых листков. Для получения зачета нужно решить не менее половины всех задач.
Листок 1 Листок 2 Листок 3 Листок 4
Листок 5 Листок 6 Листок 7 Листок 8
Листок 9 Листок 10
Программа курса
- Кривые в плоскости и в пространстве. Кривизна, кручение, репер Френе.
- Поверхности в трехмерном пространстве. Первая и вторая квадратичные формы. Главные кривизны, средняя и гауссова кривизна. Нормаль средней кривизны. Формула Эйлера для кривизны нормального сечения.
- Поверхности в n-мерном евклидовом пространстве. Первая и вторая квадратичные формы. Связности в касательном и нормальном расслоениях к поверхности. Вторая квадратичная форма и оператор Вейнгартена. Деривационные уравнения Гаусса-Вейнгартена. Теорема Гаусса-Бонне для поверхностей.
- Векторные расслоения. Склеивающие коциклы. Структурная группа. Евклидовы и эрмитовы расслоения. Естественные операции с расслоениями. Ориентируемые расслоения.
- Связности в векторных расслоениях. Локальное задание связности: локальная форма связности, символы Кристоффеля. Кривизна. Связности в евклидовых и эрмитовых расслоениях. Связности, согласованные с метрикой и их кривизна.
- Связности в главных расслоениях.
- Римановы многообразия. Кручение, кривизна. Связность Леви-Чивиты. Симметрии тензора кривизны. Тензор Риччи. Скалярная кривизна.
- Римановы многообразия II. Геодезические. Геодезические координаты. Лагранжево описание геодезических. Вторая вариация.
- Подмногообразия римановых многообразий. Первая и вторая квадратичные формы.
- Оператор Лапласа-Бельтрами на римановых многообразиях.
- Характеристические классы. Конструкция Чженя-Вейля характеристических классов. Классы Чженя, Понтрягина и Эйлера и их свойства. Характер Чженя и его свойства.
- Расслоения и их когомологии. Класс Тома. Конструкция класса Тома по Матаи-Квиллену. Связь класса Тома и класса Эйлера. Теорема Гаусса-Бонне.