
Preface

Vortices are often associated with dramatic circumstances such as hurricanes; this
type of vortex has been studied extensively in the framework of classical fluids. Nev-
ertheless, its quantum counterpart has gained major interest in the past few years due
to the experimental realization of Bose–Einstein condensates (BEC), a new state of
matter predicted by Einstein in 1925. Vortices in BEC are quantized, and their size,
origin, and significance are quite different from those in normal fluids since they
exemplify “superfluid” properties.

Since the first experimental achievement of Bose–Einstein condensates in 1995
in alkali gases and the award of the Nobel Prize in Physics in 2001, the properties
of these gaseous quantum fluids have been the focus of international interest in con-
densed matter physics. This book was both motivated by this intense activity, espe-
cially in the group of Jean Dalibard at the Ecole normale supérieure, but also by the
constant development of mathematical techniques which could prove useful in tack-
ling these problems, in particular in the group of Haim Brezis. This monograph is
dedicated to the mathematical modelling of some specific experiments which display
vortices and to a rigorous analysis of features emerging experimentally. It can serve
as a reference for mathematical researchers and theoretical physicists interested in
superfluidity and quantum condensates, and can also complement a graduate semi-
nar in elliptic PDEs or modelling of physical experiments. There are two introductory
chapters: the first is related to the physics background, while the second is devoted
to the presentation of the mathematical results described in the book.

Vortices have been observed experimentally by rotating the trap holding the
atoms in the condensate. In contrast to a classical fluid, for which the equilibrium
velocity corresponds to solid body rotation, a quantum fluid such as a Bose–Einstein
condensate can rotate only through the nucleation of quantized vortices beyond some
critical velocity. There are two interesting regimes: one close to the critical velocity
where there is only one vortex, and another at high rotation values, for which a dense
lattice is observed. Another experiment consists of a superfluid flow around an ob-
stacle: at low velocity, the flow is stationary; while at larger velocity, vortices are
nucleated from the boundary of the obstacle.
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One of the key issues is thus the existence of these quantized vortices. We ad-
dress this issue mathematically and derive information on their shape, number, and
location. In the dilute limit of the experiments, the condensate is well described by
a mean field theory and a macroscopic wave function, solving the so-called Gross–
Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma
convergence, and homogenization techniques. We prove existence of solutions which
have properties consistent with the experimental observations. Open problems re-
lated to recent experiments are also presented. They will require the development of
new tools related for instance, to microlocal analysis or time–dependent problems.

The suggestion for setting down these important ideas came from Haim Brezis,
and I would like to thank him warmly for his constant enthusiasm and support while
I was working on it. Many tools used here have been developed by either him or his
school. I am glad to be able to present an application of this beautiful mathematics
to today’s physics.

I am also extremely grateful to Jean Dalibard, who has always been willing to
take time to share his experiments, his ideas, and his interests in how mathematics
can contribute to physics. Working together with him and writing a joint paper was a
real pleasure and a source of mathematical problems for many years to come. I would
also like to thank him for his careful reading of this manuscript. Before working with
Jean, I had the opportunity of many fruitful discussions with members of his group,
in particular Vincent Bretin, Yvan Castin, and David Guéry-Odelin. I have always
appreciated their open minds and interest in mathematics. I would like to thank David
in particular for his comments leading to improvements in the introductory parts of
this book.

I owe my personal interest in interdisciplinary topics to the joint efforts of Etienne
Guyon, Yves Pomeau, and Henri Berestycki, who launched a program for students
at the Ecole normale supérieure to spark interest in problems on the border between
mathematics and physics. This effort was a real success, as were the various maths-
physics meetings in Foljuif, a property of the Ecole normale supérieure. At one of
them, I met Yvan Castin and realized that we had mathematical tools that could help
in understanding problems emerging in rotating Bose–Einstein condensates. I would
like to again my deep gratitude to Etienne Guyon, Yves Pomeau, and my supervisor
Henri Berestycki, for all that I discovered has been thanks to them.

I would like to also thank, of course, all my collaborators on these topics, in
particular: Tristan Rivière, with whom this huge program started and the evidence
of vortex bending occurred; Bob Jerrard, whose involvement in understanding the
shape of vortices was quite influential and with whom it was a pleasure to work in
Vancouver, Milan, Istanbul, and Minneapolis (I thank all the hosting institutions) and
who has undertaken a very careful reading of the book; Qiang Du and Ionut Danaila,
who have performed, on different topics, beautiful numerical computations; Stan
Alama and Lia Bronsard, who came to Paris and became interested in these topics
when they discovered them; Xavier Blanc, with whom I am very happy to have
worked with on many projects; and very recently Francis Nier, who has allowed
me to discover microlocal analysis and Bargmann transforms, which have proved to
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be quite useful in tackling these problems. It was also very rewarding to work with
outstanding physicists, Jean Dalibard and Yves Pomeau. Many colleagues all over
the world have mentioned that I was quite lucky to have had this opportunity and to
have found a common language to speak. I certainly believe it.

Part of this monograph was taught as a Ph.D. course at Paris 6 in 2003–2004.
One of the results presented here was obtained by two of these Ph.D. students, Radu
Ignat and Vincent Millot, whom I jointly supervised with Haim Brezis. I am pleased
to describe their work in one of the chapters.

The quality of the presentation of this book was greatly improved thanks to all
the lectures given in various universities or summer schools. I would like to thank
in particular: Luis Caffarelli and Irene Gamba, Peter Constantin, Peter Sternberg,
Miguel Escobedo, Gero Friesecke, Fang-Hua Lin, Stefan Muller, Tristan Rivière,
and Juan-Luis Vazquez. I have also benefited from informal discussions with Fabrice
Bethuel, Petru Mironescu, Sylvia Serfaty, Etienne Sandier, and Didier Smets.

I take the opportunity here to express my gratitude to all my colleagues in the
Laboratoire Jacques-Louis Lions, in particular: to Yvon Maday, who is a very en-
thusiastic head of department; to my office mate Xavier Blanc; to my office neigh-
bours, Edwige Godlewski and Francois Murat; to Olivier Glass, Frédéric Hecht,
Simon Masnou, and the staff in the laboratory, Danielle Boulic, Michel Legendre,
Jacques Portes, and Liliane Ruprecht.

The writing of this book was made possible by my position at CNRS, which
should be naturally associated with the outcome of such interdisciplinary effort.
My research during this period was supported by a CNRS grant for young re-
searchers and a French ministry of research grant, ACI “Nouvelles interfaces des
mathématiques.” Some of the open problems were derived during a maths–physics
meeting organized with David Guéry-Odelin at the “Fondation des Treilles” in Tour-
tour, and I would like to acknowledge their welcome.

Finally, I would like to thank my family and friends for their constant support in
the preparation of the manuscript and all the people at Birkhäuser, in particular Ann
Kostant, for their help.

Paris, October 31, 2005, Amandine Aftalion





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 The Physical Experiments and Their Mathematical Modelling . . . . . . 1
1.1 A hint on the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Brief historical summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 How to achieve a BEC experimentally . . . . . . . . . . . . . . . . . . . 2
1.1.3 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 The Gross–Pitaevskii energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 The Thomas–Fermi regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Remarks on the original problem . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Mean-field quantum Hall regime . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5 Flow around an obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The Mathematical Setting: A Survey of the Main Theorems . . . . . . . . 19
2.1 Small ε problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 The two-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 The three-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Vortex lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Flow around an obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Two-Dimensional Model for a Rotating Condensate . . . . . . . . . . . . . . . 29
3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Single-vortex solution and location of vortices . . . . . . . . . . . . 31
3.1.2 Ideas of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Determining the density profile . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Existence of a minimizer of Eε . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Splitting the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Bounded number of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 First energy bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



x Contents

3.3.2 Vortex balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 The rotation term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 A lower bound expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Refined structure of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Some local estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Bad discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 No degree-zero vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Proof of Proposition 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Final expansion and properties of vortices . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Vortices have degree one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.2 The subcritical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.3 The supercritical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.1 Vortices in the region of low density . . . . . . . . . . . . . . . . . . . . 75
3.8.2 Other trapping potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.3 Intermediate � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8.4 Time-dependent problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Other Trapping Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Non radial harmonic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Quartic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Giant vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Circle of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 Circle of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Giant vortex or isolated vortices . . . . . . . . . . . . . . . . . . . . . . . . 98

5 High-Velocity and Quantum Hall Regime . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Lowest Landau level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Construction of an upper bound . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3 Properties of the minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.4 Other trapping potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Regular lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Distorted lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Infinite number of zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Other trapping potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.1 Lower bound and � convergence . . . . . . . . . . . . . . . . . . . . . . . 119
5.6.2 Restriction to the LLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6.3 Reduction to a two-dimensional problem . . . . . . . . . . . . . . . . 121
5.6.4 Mean field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents xi

6 Three-Dimensional Rotating Condensate . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Formal derivation of the reduced energy E[γ ] . . . . . . . . . . . . . . . . . . . 126

6.2.1 The solution without vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Decoupling the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2.3 Estimate of Gε(vε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.4 Estimate of Iε(vε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2.5 Final estimate for the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 � convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 Main ideas in the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Single Vortex line, study of E[γ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.1 Setting of minimization of E[γ ] . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.2 The bent vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4.3 Properties of critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 A few open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.5.1 Small velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.5.2 Critical points of E�[χ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.3 Finite number of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.4 Other trapping potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.5 Whole space problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.6 Decay of vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Superfluid Flow Around an Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1 Mathematical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.1 Two-dimensional flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.1.2 Three-dimensional flow around a condensate . . . . . . . . . . . . . 162

7.2 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2.1 Solutions at c = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2.2 Existence of a solution to IR . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2.3 Bounds on the solutions of IR . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2.4 Estimating the momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.5 Proof of Theorem 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.6 Limit at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3.1 Proof of Theorem 7.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3.2 Proof of Theorem 7.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8 Further Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1 Setting in the whole space for the Thomas–Fermi regime . . . . . . . . . 195

8.1.1 Three-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1.2 Two-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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1

The Physical Experiments and Their Mathematical
Modelling

Bose–Einstein condensation (BEC), first predicted by Einstein in 1925, has been re-
alized experimentally in 1995 in alkali gases. The award of the 2001 Nobel Prize in
Physics to E. Cornell, C. Wieman, and W. Ketterle acknowledged the importance of
the achievement. In this new state of matter, which is very dilute and at very low tem-
perature, a macroscopic fraction of the atoms occupy the same quantum level, and
behave as a coherent matter wave similar to the coherent light wave produced by a
laser. In the dilute limit, the condensate is well described by a mean-field theory and
a macroscopic wave function. The properties of these gaseous quantum fluids have
been the focus of international interest in physics, both experimentally and theoret-
ically, and many applications are envisioned. An important issue is the relationship
between BEC and superfluidity, in particular through the existence of vortices. The
focus of this book is the mathematical properties of vortices, observed in very recent
experiments on rotating condensates.

After a brief summary of the main achievements leading to BEC, we will describe
the experimental device which has had an influence on the mathematical modelling
through the trapping potential. Then we will focus on a specific experiment on ro-
tating condensates and the main observations that have been made. Finally, we will
state the mathematical framework and explain the issues that we want to address in
this book.

1.1 A hint on the experiments

1.1.1 Brief historical summary

The phenomenon of condensation was predicted in 1925 by Einstein, on the basis of a
paper by Bose: for a gas of noninteracting particles, below a certain temperature there
is a phase transition where a macroscopic fraction of the gas gets condensed, that is,
a significant fraction of the atoms occupy the state of lowest energy. This quantum
degeneracy, which is a consequence of statistical effects of atoms in a box, occurs
when the interatomic distance becomes comparable to the de Broglie wavelength,
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given by λdB = h/(2πmkBT )1/2, where T is the temperature, kB, the Boltzmann
constant, and m the mass of each atom. This condition implies that the gas is at very
low temperature. In 1925, there was no experimental evidence of the phenomenon,
since at the temperature required by the theory, all known materials were in the solid
state.

In 1938, after the discovery of the superfluidity of liquid helium independently
by Allen and Misener [20], and Kapitza [90], London [103] made a link between
superfluidity and Einstein’s theory. But in liquid helium, less than 10% of the atoms
are condensed and the system is strongly interacting, while Einstein’s model is for
an ideal gas.

Intense theoretical work was done, in particular by Bogoliubov, to understand the
relationship between superfluidity and Bose–Einstein condensation. The prediction
of quantized vortices was made by Onsager [118] in 1949 and Feynman [63] in
1955, with the experimental discovery by Hall and Vinen [77] in 1956 and the direct
observation by Packard and Sanders [119] in 1972.

The fact that interactions in helium reduce the occupancy of the lowest energy
state led to the search for substances closer to Einstein’s ideal gas model, which can
be produced in a metastable dilute phase and lead to a high condensate fraction.

The essential techniques to produce quantum degenerate gases are cooling tech-
niques, and in particular laser cooling. The 1997 Nobel Prize in physics was awarded
for the development of these techniques [48]. Their improvement has led, in 1995,
to the achievement of Bose–Einstein condensation in atomic gases by the Jila group
in Boulder (Cornell, Wiemann [51]), and very soon afterwards by the MIT group
(Ketterle [92]). A BEC is a quantum macroscopic object which can be described
by a complex-valued wave function. There are many different experiments being
made on this new state of matter; we refer to the books by Pethick–Smith [120] and
Pitaevskii–Stringari [124] for more details on the stakes and the theoretical approach.
We point out that although the gases are dilute, interactions play an important role.

The main concern of this book lies in experiments on rotating condensates, which
are similar to experiments on helium and allow the observation of quantized vortices.

1.1.2 How to achieve a BEC experimentally

There are several steps in the achievement of condensation. The first is laser cool-
ing, achieved with three pairs of counterpropagating laser beams along three or-
thogonal axes. The gas is precooled, so that it can be confined in a magnetic trap
(Ioffe–Pritchard trap) as illustrated in Figure 1.1. The temperature reached is of or-
der 100 µK, with 109 atoms in a volume on the order of one cm3. Laser cooling alone
cannot produce sufficiently high density and low temperature for condensation. The
second step, evaporative cooling (in some sense similar to blowing on your coffee to
cool it), allows one to remove the most energetic atoms and thus further cool down
the cloud. The drawback is that a large number of atoms are lost in the process: at
the end, there are about 104–107 atoms, and the final temperature is below 1µK. For
a more detailed description, one may refer to the Nobel lectures [48, 51, 92] or to
[25, 53, 120].
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Fig. 1.1. Experimental realization of a trap. Courtesy of V. Bretin.

The important feature for our mathematical purposes is the confinement of the
atoms: a term representing the magnetic trapping potential m(ω2

x x2+ω2
y y2+ω2

z z2)/2
(where ωi are the trap frequencies in the i direction) will appear in the energy and
the equations. This trapping potential is also at the origin of the nonuniformity of
the gas and the special shape of the condensate: cigar-shaped, as illustrated in Fig-
ure 1.2.

1.1.3 Experimental observations

The experiment that we want to focus on is reminiscent of the classical rotating
bucket experiment for superfluid helium [57, 119]. When a normal fluid is rotated in
a bucket at velocity �̃̃�̃�, the fluid rotates as a rigid body, that is, the velocity v increases
smoothly from the center to the edges, v = �̃̃�̃� × r, and the flow is characterized by

Fig. 1.2. Cigar-shaped condensate. Courtesy of V. Bretin.
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uniform vorticity ∇ × v = 2�̃̃�̃�. In a quantum fluid, the velocity field is irrotational
almost everywhere. This is a consequence of the description by a complex-valued
order parameter ψ = |ψ |ei S : ∇S is identified to a velocity v, and thus ∇ × v = 0
as soon as ψ does not vanish. The zeroes of ψ around which there is a circulation of
phase are the singularities or vortices. In order to rotate, the flow field has to develop
singularities.

Quantized vortices have been obtained using different approaches. A first device
consists in imprinting the phase of the condensate to drive its rotation by optical
means [111]; it was used to investigate the precession of the vortex core around
the symmetry axis of the trap. The technique on which we will focus resembles the
rotating bucket experiment: a rotating laser beam superimposed on the magnetic trap
allows one to spin up the condensate by creating a harmonic anisotropic rotating
potential along the z axis (see Figure 1.2). This has been developed in the groups of
J. Dalibard at the ENS in Paris [107, 108, 132] and W. Ketterle at MIT [1, 127].

For small angular velocities, there is no modification of the condensate. For suf-
ficiently large angular velocities, vortices appear in the system. These vortices corre-
spond to permanent currents, whose existence is a consequence of the superfluidity.
In Figure 1.3, black regions correspond to the singularity lines or vortices: this is a
view of the cross section of the condensate (xy plane) integrated on z. The white re-
gion corresponds to places where |ψ | is significant. For low velocity, there is a small
number of vortices, while at larger velocity a triangular lattice is observed, called the
Abrikosov lattice, since it is reminiscent of the physics of superconductors. Vortices
are imaged after expansion of the condensate: in Figure 1.4, the condensate under-
goes a free fall. This time-of-flight technique acts as a microscope, magnifying the
size of the vortex as well as that of the condensate by a factor up to 30. This modifies
the length in the x and y directions.

We do not discuss the dynamical mechanism of nucleating vortices. Depending
on whether �̃̃�̃� is turned on rapidly or increased adiabatically, the instabilities do not
occur in the same way and hysteresis phenomena may occur. A condensate with
multiple vortices is created by rotating at a resonant frequency. During the next two
seconds, the rotation is stopped and the vortex lattice decays. Eventually, the con-
densate is left with a single vortex, whose lifetime is on the order of a few seconds.
We are interested in stable configurations according to the value of the rotation.

A special geometrical feature of the singularities is their three-dimensional
shape: the lines are not straight along the axis of rotation but bent as illustrated in

Fig. 1.3. Transverse imaging in the xy plane: from left to right, the rotational velocity in-
creases. Courtesy of V. Bretin and J. Dalibard.
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Fig. 1.4. Transverse and longitudinal imaging of a vortex (left). Single vortex lines (right).
Courtesy of V. Bretin and J. Dalibard.

Figure 1.4 (experimental result). The longitudinal imaging (along the z axis) repro-
duces what is observed in Figure 1.3. The transverse imaging allows us to see that
the vortex line is not straight. The shape is distorted with respect to the initial one,
because of the imaging technique.

1.2 The mathematical framework

The aim of this book is to present a mathematical framework and theoretical elements
in order to justify these observations rigorously. In particular, we would like to ad-
dress the issues of the shape of the first vortex line, the critical rotational velocities
for the nucleation of vortices, and the existence and properties of the lattice.

1.2.1 The Gross–Pitaevskii energy

The study of interacting nonuniform dilute gases at zero temperature can be made
in the framework of the Gross–Pitaevskii energy. This means that the field operator,
used to describe quantum phenomena can be replaced by a classical field ψ(r, t),
also called the order parameter or wave function of the condensate. This relies on the
following assumptions:

• A large fraction of atoms are in the same state.
• The potential describing the interaction between atoms can be replaced by a

model potential, reproducing the same scattering properties, which can be han-
dled in the Born approximation. The scattering length a is an important datum,
since it can be measured experimentally.

• The wave function varies slowly on distances of order the range of interatomic
forces.

These assumptions are indeed fulfilled for condensed gases and this model is very
satisfactory for describing the experiments mentioned above. We refer to the books
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[120] or [124] for more details. The rigorous derivation of the Gross–Pitaevskii en-
ergy from the many-body Hamiltonian was made, in some asymptotic limit, by Lieb,
Seiringer, and Yngvason [99] in the nonrotating case and very recently by Lieb and
Seiringer [98] in the rotating case. This type of issue will not be addressed here;
throughout the book, the mean-field description by the Gross–Pitaevskii energy will
be used and the properties of its minimizers will be analyzed.

We are interested in stationary phenomena: thus in the frame rotating at an-
gular velocity �̃̃�̃� = �̃ez , the trapping potential and the wave function are time-
independent. The wave function ψ minimizes the following energy, called the Gross–
Pitaevskii energy, which includes in this order a kinetic contribution, a term due to
rotation, a term due to the presence of the harmonic trapping (ωi is the trapping fre-
quency in the i direction), and a term due to the atomic interaction (we denote by N
the number of atoms in the system and g3D = 4π�

2a/m, where a is the scattering
length mentioned above):

E3D(ψ) =
∫

R3

�
2

2m
|∇ψ |2

−�

2
�̃̃�̃� × x · (iψ∇ψ̄ − iψ̄∇ψ) + m

2
V (x)|ψ |2 + N

2
g3D|ψ |4,(1.1)

with V (x) = ω2
x x2 + ω2

y y2 + ω2
z z2, under the constraint

∫ |ψ |2 = 1. Here, m is the

atomic mass, x = (x, y, z), �̃̃�̃� × x is the wedge product of the two vectors and is
thus equal to (−�̃y, �̃x, 0). In what follows, we will denote the vector (iψ∇ψ̄ −
iψ̄∇ψ)/2 by (iψ, ∇ψ), which has the meaning of a scalar product in C.

We call d = (�/mωx )
1/2 the characteristic length of the harmonic oscillator and

assume ωy = αωx , ωz = βωx . Rescaling distances by d, that is, setting φ(x) =
d3/2ψ(dx), the energy becomes, in units of �ωx ,

∫
R3

1

2
|∇φ|2 − �̃̃�̃�

ωx
× x · (iφ, ∇φ) + 1

2
(x2 + α2 y2 + β2z2)|φ|2 + 2π N

a

d
|φ|4

(1.2)

under
∫ |φ|2 = 1. If �̃ > min(ωx , ωy), the energy is not bounded below: the rotating

force is stronger than the trapping potential.
There are three distinct regimes of rotation according to the value of �̃. For low

rotational velocity, there are no vortices in the system. Then for intermediate �̃,
there are a few vortices arranged in the xy plane as illustrated in Figure 1.3. Their
characteristic size is much smaller than their interdistance. Thus, we will introduce a
small parameter describing what is called the Thomas–Fermi regime. We will make
an expansion of the energy in terms of this parameter, which will allow us to identify
the critical value of the velocity as well as the location and shape of vortices. We
will see that, in this regime, the condensate and the wave function are localized in
the domain D defined by

D = {x2 + α2 y2 + β2z2 < ρ0}, (1.3)
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where ρ0 is determined by∫
D

ρTF(r) = 1 where ρTF(r) = ρ0 − (x2 + α2 y2 + β2z2). (1.4)

This yields ρ
5/2
0 = 15αβ/8π.

The other regime is at high rotational velocity, that is, when �̃ is close to the
trapping frequency ωx (we call � = �̃/ωx ). Then, the centrifugal force nearly bal-
ances the trapping force, the condensate expands, and the number of vortices di-
verges. There is a dense lattice for which vortices have approximately the same size
as their interdistance. The condensate is no longer localized in D but in a larger do-
main D1 = {x2(1 − �2) + (α2 − �2)y2 + β2z2 < ρ1}, where ρ1 is defined by
some normalization condition, similar to ρ0. This is due to the fact that the centrifu-
gal force creates an effective trapping potential, whose frequencies in the x and y
directions are ωx

√
1 − �2 and ωx

√
α2 − �2. The study of the lattice will rely on

homogenization techniques and double-scale convergence.
Though the shape of vortices is interesting from a three-dimensional point of

view, before studying the full three-dimensional model related to the experiments,
we want to restrict to a simpler situation in two dimensions, which allows us to un-
derstand the main features. Our two-dimensional reduction corresponds either to a
condensate which is an infinite cylinder (then the coefficient a in (1.2) has to be
replaced by a/Z , where Z is the elongation of the condensate), or to a condensate
very thin in the z direction (that is, when β is large). In this latter case, the two-
dimensional model can be rigorously derived from the three-dimensional energy.
We refer to Schnee, Yngvason [140] and Olshanii [117] for details: when the con-
finement in the z direction is much stronger, the wave function φ(x, y, z) can be
decoupled into φ0(x, y)ξ(z); ξ(z) corresponds to the ground state without interac-
tion in the z direction and is a Gaussian, and φ0 minimizes the corresponding 2D
problem, where the scattering length a has been modified to include the reduction,
that is, a2d = a/az , where az = (�/mωz)

1/2. In this setting, the function ρTF(x, y)

is equal to ρ0 − x2 − α2 y2, and the domain D = {ρTF > 0} is two-dimensional.
This two-dimensional reduction is particularly meaningful in the case of high rota-
tional velocity, since the ratio of the trapping frequency along the z direction and the
effective perpendicular trapping frequency are of order

√
1 − �. This ratio becomes

small when � reaches the trapping frequency ωx . We will use this reduction in this
setting, though it is an open problem to derive it rigorously.

1.2.2 The Thomas–Fermi regime

A limit often considered in the literature, and called the Thomas–Fermi regime, oc-
curs when the kinetic energy is small in front of the trapping and interaction terms.
This is the limit that we are going to consider for the case of low velocity, when
there is a small number of vortices in the system. This limit can be quantified by the
introduction of a small parameter
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ε =
(

d

8π Na

)2/5

. (1.5)

Using the experimental values of the ENS group [108] for rubidium atoms,1 we find
that ε = 2.75 10−3. We rescale the distances by R = d/

√
ε and define u(r) =

R3/2φ(x), where x = Rr, and we set � = �̃/εωx . The energy can be rewritten as∫
R3

1

2
|∇u|2 − ��� × r · (iu, ∇u) + 1

2ε2
(x2 + α2 y2 + β2z2)|u|2 + 1

4ε2
|u|4. (1.6)

Due to the constraint
∫ |u|2 = 1, we can add any multiple of

∫ |u|2, so that it is
equivalent to minimize

Eε(u) =
∫

R3

1

2
|∇u|2 − ��� × r · (iu, ∇u) + 1

4ε2
|u|4 − 1

2ε2
ρTF(r)|u|2, (1.7)

where ρTF is defined by (1.4). If � is bounded above by C |log ε|, one can check that
if r ∈ R3 \ D, since the energy is convex in this region, |u| decays exponentially
fast [80]. This means that D corresponds to the region where |u| is significant, that
is, the location of the condensate in the figures. The domain D is elongated in the z
direction because β is much smaller than 1 in the experiments.

In order to simplify the mathematics, we will restrict to minimizing Eε in D
instead of R3, with the condition u ∈ H1

0 (D), and we will ignore the L2 constraint,
which will be almost satisfied because of (1.4). More details will be given in the last
paragraph of this section.

Thus, we will be interested, according to the value of �, both when D is an
ellipsoid in R3 and when it is an ellipse in R2, in the minimizers u ∈ H1

0 (D) of

Eε(u) =
∫
D

1

2
|∇u|2 − ��� × r · (iu, ∇u) + 1

4ε2
(|u|2 − ρTF(r))2 (1.8)

where D and ρTF are respectively given by (1.3) and (1.4), ��� = �ez , and r =
(x, y, z). We point out that another way to write the energy is

Eε(u) =
∫
D

1

2
|∇u − iAu|2 − 1

2
���2r2|u|2 + 1

4ε2
(|u|2 − ρTF(r))2, (1.9)

where A = ���× r. This formulation is reminiscent of the one used for the Ginzburg–
Landau model of superconductors [109, 138], and so is the value of the critical rota-
tional velocity. Yet the nonuniformity of ρTF gives rise to a new series of phenomena
and special patterns for vortices.

The mathematical techniques are inspired by the tools developed for the analysis
of vortices in the framework of the Ginzburg–Landau problems by Bethuel–Brezis–
Helein [32] in 2D and Riviere [131] in 3D, Jerrard [84], Jerrard–Soner [86], and

1 m = 1.445 × 10−25kg, a = 5.3 × 10−9m, N = 1.4 × 105, and ωx = 1094 s−1 with
α = 1.06, β = 0.067.
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Sandier–Serfaty [138]. We will see that the critical velocity of nucleation of the first
vortex is of order |log ε|. We will prove that |u|2 is very close to ρTF except in tubes
in 3D or balls in 2D of characteristic size ε where u vanishes. Close to the first critical
velocity, the number of vortices is bounded. The distances between vortices, of order
1/

√|log ε|, is much larger than their characteristic size ε. The location and number
of these singularities will be identified through an energy expansion.

We are now going to describe briefly the most significant results of this book
concerning the Thomas–Fermi regime. More rigorous statements will be made in
the next chapter, which is a mathematical introduction. One of the main results is
the derivation of a reduced line energy, which allows us to justify the experimental
observation of a bent vortex in Figure 1.4 (see also our numerical computations in
Figure 1.5, which will be described in more detail in Chapter 6). If the problem
is reduced to a two–dimensional setting, the expansion of the energy in terms of
ε can be made more precise and we are able to determine the critical velocity for
the existence of n vortices. Finally, we present results for other types of trapping
potentials.

(a) (b) (c)

Fig. 1.5. Single-vortex configurations in BEC: (a) U vortex, (b) planar S vortex, (c) nonplanar
S vortex. Isosurfaces of lowest density within the condensate.

The bent vortex

This is one of the main results of this book, which will be described in Chapter 6.
When the domain D defined by (1.3) is three-dimensional, the shape of vortices de-
pends on the elongation β in the z direction. We are able to determine the critical
velocity for which vortices are favorable, and their optimal shape. Vortices can be
represented by oriented curves, that is, Lipschitz functions γ : (0, 1) → D. They cor-
respond to the zero set of u around which there is a circulation. We prove that if the
minimizer has a singularity line γ , then the energy Eε has the following expansion:

Eε(u) = E0(ε) + π |log ε|Eγ + o(|log ε|),



10 1 The Physical Experiments and Their Mathematical Modelling

where E0(ε) is the the leading-order term and the energy of the vortex-free solution,
which does not depend on the solution u, while the energy of the vortex line Eγ is

Eγ =
∫

γ

ρTF dl − �

(1 + α2)|log ε|
∫

γ

ρ2
TF dz. (1.10)

The energy Eγ contains a term due to the vortex length (first integral) and one due to
rotation (oriented integral since dz = dl · ez). The rotation term becomes significant
when � is of order |log ε|. This derivation is justified using �-convergence tech-
niques [85] and the introduction of currents. The convergence of Jacobians implies
regularity of the currents and the fact that vortices are indeed described by regular
curves.

The next step is to study the minimizing curves of Eγ according to �: if for
some values of �, there are curves γ such that Eγ < 0, then a vortex is favorable
in the system. We find that indeed if β, which is related to the elongation of the
condensate in (1.3), is small, then the minimizing curve is not along the z axis, but
bending. We also analyze the properties of the local minimizers of Eγ and relate them
to experimental observations and numerical computations illustrated in Figure 1.5:
there are other types of vortex lines than the bent vortex, namely S vortices, which
are only local minimizers of the energy.

In the case of several vortex lines, we derive an interaction energy between the
lines, which is of lower order:

I (γi , γk) = π

∫
γi

ρTF log(dist(x, γk)) dl.

Critical velocities for the existence of n vortices

For the simplified problem where ρTF(r) = ρ0 − r2 and D given by (1.3) is a
disc in R2, we describe in Chapter 3 more detailed results about the minimizer
u ∈ H1

0 (D, C) of (1.8). We make an asymptotic expansion of the energy Eε in
terms of ε, which allows us to characterize the critical value for which the minimizer
exhibits n vortices and get information on the location of these vortices. This is in the
spirit of the techniques of Ginzburg–Landau vortices introduced by Bethuel–Brezis–
Helein [32] in 2D, developed by Sandier–Serfaty [138], and used for this problem in
R2 by Ignat–Millot [80, 81].

When the minimizer is vortex-free, |u|2 ≈ ρTF. Vortices are points where u
vanishes and around which there is a circulation. They are identified through small
balls of characteristic size ε. Except for these balls, which are local perturbations of
the wave function, |u| is close to the vortex-free solution. The contribution of vortices
to the energy is through their phase. If u is a minimizer with n vortices, then we will
prove that

Eε(u) = E(ε) +
(
πρ0n|log ε| − π�

2
nρ2

0

)
+π

2
nρ0(n − 1) log � + min

R2n
w + Cn + o(1), (1.11)
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where E(ε) is the leading order term in ε representing the energy of the vortex-free
solution, Cn is an explicit constant which depends only on n, o(1) is a term which
tends to 0 as ε tends to 0, and

w(b1, . . . , bn) = −πρ0

∑
i �= j

log |bi − b j | + πρ0

2

∑
i

|bi |2. (1.12)

A solution with vortices is energetically favorable as soon as the second term in the
expansion becomes negative, that is, �ρ0 > 2|log ε|. This provides the value of the
critical velocity for the existence of vortices: if limε→0 �/|log ε| < 2/ρ0, then the
minimizer does not have vortices on any compact subset of D as soon as ε is small
enough. If limε→0 �/|log ε| < 2/ρ0, one has to go further into the expansion of Eε

to understand the number and location of vortices. Namely, the number of vortices is
determined by

ω1 = lim
ε→0

� − 2|log ε|/ρ0

log |log ε| . (1.13)

If n − 1 < ω1ρ0 < n, we prove that the minimizer has n vortices pi . The rescaled
location of the vortices p̃i = pi/

√
� tends to minimize the reduced energy w. One

can check that the minimization of w indeed leads to patterns similar to those in
Figure 1.3. In our scaling, the points pi get close to the origin (at distance of order
1/

√
� or 1/

√|log ε|), but in initial physical units, this has to be rescaled by the size
of the condensate, of order 1/

√
ε.

If limε→0 �/|log ε| > 2/ρ0 but stays finite, the density of vortices is uniform in
the system, but their interdistance remains much bigger than their characteristic size.
Another regime, in which � becomes of order 1/ε2, will be addressed below. There,
the interdistance between vortices becomes of order the vortex size.

Other trapping potentials

In recent ENS experiments [40, 150], an extra laser beam is added to the system
and thus modifies the trapping potential. We will address this case in Chapter 4 for a
two-dimensional condensate which can be described by replacing ρTF = ρ0 − r2 by
ρ0 − αr2 + βr4. According to the values of α and β, the region D where ρTF > 0
changes topology and in particular, can be an annulus. In this case, we prove that
the minimizer displays a giant vortex and determine the critical velocities �d for
which the circulation of this giant vortex is d. These critical velocities are of order 1,
contrary to the case of the disc: if

�1d ≤ � < �1(d + 1) with �1 =
∫
D

ρTF(r)

r2
,

then we prove that the minimizer has a degree d on any circle included in D.
For velocities of order |log ε|, the pattern of vortices changes. There is a giant

vortex in the center with circulation proportional to |log ε|, but there are also vortices
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Fig. 1.6. Giant vortex with circle of vortices.

in the bulk, that is, inside the annulus, as illustrated in Figure 1.6: they are arranged
on a specific circle that we are able to identify as the location of the maximum of the
function ξ(r)/ρTF(r), where

ξ(r) :=
∫ R0

r
ρTF(s)

(
s − 1

s�1

)
ds. (1.14)

1.2.3 Remarks on the original problem

The original problem coming from the experiments is posed in the whole space. That
is, one has to look for minimizers of

Eε(u) =
∫

Rn

1

2
|∇u|2 − ��� × r · (iu, ∇u) + 1

4ε2

(
(|u|2 − ρTF(r))2 − (ρTF(r)−)2

)
(1.15)

under
∫

Rn |u|2 = 1, where n =2 or 3 and (ρTF)− is the negative part of ρTF. Outside
the domain D, one can prove that the modulus of the minimizer decreases exponen-
tially fast to zero. In fact, |u|2 is close to the positive part of ρTF except in the vortex
balls, which are small local perturbations of the density, and close to the boundary
of D. Our reduction to the bounded domain D removes the L2 constraint but pre-
scribes the value of ρ0 through

∫
D ρTF = 1. The boundary-layer thickness where

|u|2 matches ρTF is of order ε2/3, and inside this boundary layer, u can be approx-
imated by a solution of a Painlevé-type equation. We rescale the solution through
u(x, y, z) = ε1/3ψ(x̃, ỹ, z̃), where x̃ = (

√
ρ0 − x)ε2/3, y = ỹε2/3, and z = z̃ε2/3.

This blows up the boundary of the cloud near x = √
ρ0, and ψ is almost a function

of x̃ and a solution of the Painlevé equation [61, 54]

p′′ + (2s
√

ρ0 − p2)p = 0, p(s) →
s→−∞ 0, p(s) ∼

s→∞

√
2
√

ρ0s. (1.16)
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As s tends to −∞, the cubic term in the equation can be neglected and the asymptotic
behaviour is given by an Airy function: Ae−2(−s)2/3/3/(2(−s)1/4), where the value
of A can be determined by a numerical integration. In the opposite limit at +∞, the
square root matches the local behaviour of

√
ρTF near the boundary of the cloud.

The rigorous proof of the derivation of the Painlevé equation is still open. The role
of this layer is important to understand the superfluid flow around an obstacle. It also
has a leading-order contribution in the term E(ε) in the energy, though this does not
influence the description of vortices.

1.2.4 Mean-field quantum Hall regime

In Chapter 5, we address a regime which is very different from the Thomas–Fermi
regime (or small ε case), namely the fast rotation regime, when the rotational velocity
�̃ gets close to the trapping frequency ωx . The small parameter will now be related
to how close � = �̃/ωx is to 1. The vortex lattice is dense and the characteristic size
between vortices becomes of the same order as their interdistance. We restrict our
analysis to a two-dimensional gas in the xy plane, assuming a strong confinement in
the z axis, as described above, and we set α = 1 for simplicity. The energy (1.2),
taking into account the 2D reduction can be written

E(ψ) =
∫

R2

1

2
|∇ψ − i��� × rψ |2 + 1

2
(1 − �2)r2|ψ |2 + 1

2
Na|ψ |4, (1.17)

under
∫

R2 |ψ |2 = 1. The term a is the effective scattering length and takes into
account the 2D reduction. The rescaled rotational velocity is along the z axis ��� =
�ez , and r = (x, y). Note that we have written the first two terms of (1.2) as the
expansion of a complete square, and thus subtracted the extra term. In order for the
energy to be bounded below, we need to have � < 1, which means that the trapping
potential remains stronger than the rotating force. Our limiting regime is when �

tends to 1. The minimization is performed in R2 and not just in a bounded domain,
because the size of the condensate increases as � approaches 1: the characteristic
size of the condensate, that is, the region where the wave function is significant, is
proportional to (1 − �)−1/4. In this region, vortices are arranged on a triangular
lattice, while outside, the wave function is of small amplitude, yet the analysis of the
zeroes is still of interest. The amplitude of the wave function and the location of the
zeroes are plotted in Figure 1.7.

This regime displays a strong analogy with quantum Hall physics: the first part
of the Gross–Pitaevskii energy is similar to that of a charged particle in a uniform
magnetic field. Therefore, the ground state becomes degenerate as in the case of the
Landau levels obtained for the motion of a charge in a magnetic field.

Lowest Landau level

The first term in the energy is identical to the energy of a particle placed in a uniform
magnetic field 2���. The minimizers for
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Fig. 1.7. An example of (right): a configuration of zeroes minimizing the energy for � =
0.999, Na = 3. (left): density plot of |ψ |.

∫
R2

1

2
|∇ψ − i��� × rψ |2 under

∫
R2

|ψ |2 = 1. (1.18)

are well known [104] through the study of the eigenvalues of the operator −(∇−i���×
r)2. The minimum is � and the corresponding eigenspace is of infinite dimension and
called the lowest Landau level (LLL). This can be studied using a change of gauge
and a Fourier transform in one direction. The other eigenvalues are (2k+1)�, k ∈ N.
A basis of the first eigenspace is given by

ψ(x, y) = P(z)e−�|z|2/2 with z = x + iy, (1.19)

where P varies in a basis of polynomials. The closure of this space in L2(R2) is made
up of functions of the type (1.19), where P varies in the space of holomorphic func-
tions. In this framework, vortices are the zeroes of the polynomial or holomorphic
function and are thus easy to identify.

Our aim is to restrict the minimization of the energy (1.17) to this eigenspace.
We will see that as � approaches 1, the second and third terms in the energy (1.17)
produce a contribution of order

√
1 − �, which is much smaller than the gap between

two eigenvalues of −(∇ − i� × r)2, namely 2�. Thus, this restriction is natural as
a first step, but we are not able to provide a full rigorous justification. When ψ is
restricted to the lowest Landau level (1.19), the energy (1.17) reads

E(ψ) = � + ELLL(ψ) := � +
∫

R2

(1 − �2)

2
r2|ψ |2 + Na

2
|ψ |4. (1.20)

Expected shape of the minimizer

We want to minimize the energy (1.20) under
∫

R2 |ψ |2 = 1, when ψ is given by
(1.19). A numerical study consists in writing P(z) = p0

∏n
i=1(z − zi ) and mini-

mizing the energy on the location zi of the zeroes and the degree n. The result is
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illustrated in Figure 1.7: there are 30 vortices in the left picture, where |ψ | is plotted,
and 56 vortices in total in the right view. Our numerical observations indicate that
vortices are located on a regular triangular lattice in the central region (about 30 vor-
tices), while the lattice is distorted towards the edges, in the region of very low den-
sity where |ψ | is not visible. The optimal degree seems proportional to 1/

√
1 − �.

Our aim is to justify these observations rigorously. We are going to construct an up-
per bound, which is close to the numerical observations. We will use homogenization
techniques and double-scale convergence. The lower bound is still an open question.

An important issue is to understand that the existence of zeroes of P far away
modifies its decay. We assume that the zeroes lie on a lattice � = α(Z + τZ), with
α ∈ R+ and τ ∈ C, of unit cell with volume V . Let PR(z) = p0

∏
|zi |<R, zi ∈�(z−zi ).

Then as R tends to infinity,∣∣∣PR(z)e−�|z|2/2
∣∣∣ ∗
⇀ ψ(z) := η(z)e−|z|2/σ 2

with
1

σ 2
= � − π

V
, (1.21)

where η is a periodic function on the lattice which vanishes in each cell. The decay
of the wave function is thus modified by the volume of the cell through σ . In fact,
the function η is explicit and minimizes the ratio

b = −
∫ |η|4

(−
∫ |η|2)2

(where −
∫

denotes the integral on a cell per unit volume) among all periodic functions
on a lattice which vanish once in each cell. The lattice minimizing the ratio b among
all possible lattices is the triangular or hexagonal one, that is, τ = e2iπ/3. This is, the
parameter that appears for type-II superconductors for what is called the Abrikosov
lattice [2, 93].

If the volume of the cell tends to π , then the difference of scales in (1.21) between
η and the Gaussian allows a separation in the energy, and we obtain

ELLL(ψ) ∼
σ→∞(1 − �)σ 2 + Nab

4πσ 2
.

This expression is minimal when the two terms are equal and σ 4 is thus proportional
to 1/(1 − �), which provides the upper bound for the energy√

Nab(1 − �)

π
. (1.22)

Let us emphasize the presence of the coefficient b: it corresponds to the contribution
of the vortex lattice to the energy.

In fact, we prove more: any type of slowly varying profile (and not only a Gaus-
sian) can be approximated as � tends to 1, using this ansatz by distorting the lattice.
We are able to relate the distortion of the lattice to the decay of the wave function.
This is how we construct our upper bound. The search for the optimal slowly varying
profile is motivated by very recent physics papers: in a seminal paper, Ho [79] com-
puted the energy (1.20) of a configuration of type (1.19), where the zi are located
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on a triangular lattice, and found that the wave function averaged over vortex cells
has a Gaussian decay. This was confirmed by [27]. The issue of understanding the
properties of the vortex lattice and the decay of the wave function is a challenging
one: only recently did Cooper, Komineas, and Read [49] observe numerically the
distortion of the lattice on the edges of the condensate (similar to Figure 1.7) and the
decay of the wave function, which is closer to an inverted parabola than a Gaussian.

Let us motivate the inverted parabola: a rough analysis of a lower bound for
(1.20) under

∫
R2 |ψ |2 = 1 without the constraint of being in the space (1.19) implies

that the minimizer is the inverted parabola

|ψ |2 (z) = 2

π R2

(
1 − |z|2

R2

)
1{|z|≤R}, R =

(
2Na

π(1 − �)

)1/4

. (1.23)

The energy of such a test function is 2
√

2
√

Na(1 − �)/π/3, without coefficient b.
The restriction to f = ψe�|z|2/2 being holomorphic prevents one from achieving
this specific inverted parabola. But a distortion of the vortex lattice inside the space
(1.19) provides a weak-star approximation of the inverted parabola and will modify
the radius R by a coefficient b1/4 coming from the contribution of the lattice to the
energy through the function η. The distortion of the lattice on the edges improves the
upper bound (1.22) and yields

2
√

2

3

√
Nab(1 − �)

π
.

The lower bound given by the inverted parabola has a difference of a factor
√

b due
to the lattice contribution. The proof that the lower bound should include

√
b is still

open.
Additional results can be obtained using the explicit expression of the projector

onto the space spanned by (1.19): for any g(z, z̄),

�(g) = �

π

∫
R2

e�zz′
e−�|z′|2 g(z′, z̄′). (1.24)

This provides in particular an equation satisfied by the minimizer. This allows us to
prove that the minimizer has an infinite number of zeroes, and thus is not achieved by
a polynomial. We would like to get more information on the distribution of vortices
for the minimizer.

1.2.5 Flow around an obstacle

Finally, in Chapter 7 we address another experiment with Bose–Einstein condensates
which exhibits vortices [128] (see also [67, 117, 129]). It consists in a superfluid flow
around an obstacle: at small velocity, there are no vortices in the system, the flow is
indeed superfluid, and we prove the existence of stationary solutions. When the ve-
locity increases, vortices are nucleated and the flow becomes time dependent. We
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show numerical simulations and open problems related to this regime. The mathe-
matical difficulty is thus to get existence results for equations of the type

�ψ − 2ic∂xψ + ψ(a(x, y, z) − |ψ |2) = 0

when the velocity of the flow c is small, in an exterior domain, which is the exterior
of the obstacle. The precise definition of a (depending on the trapping potential) and
the domain will be given in the course of the chapter. They are related to the Painlevé
boundary layer, where the nucleation of vortices takes place.





2

The Mathematical Setting: A Survey of the Main
Theorems

This book contains results in three directions: the Thomas–Fermi regime or small
ε problem, where there is a bounded number of vortices in the system (Chapters
3, 4, 6); the fast-rotation regime, which displays a vortex lattice (Chapter 5); and
the experiment of a superfluid flow around an obstacle (Chapter 7). The tools and
techniques needed to address these problems are very different: energy expansion
using a small parameter for the Thomas–Fermi regime; double–scale convergence,
homogenization techniques, and Fock–Bargmann space for the fast–rotating regime;
energy estimates and nondegeneracy of a solution for the superfluid flow. The main
mathematical results are summarized in the present chapter.

2.1 Small ε problem

A large part of this book is concerned with the study of minimizers u ∈ H1
0 (D; C)

of the following energy, where D is a bounded domain in R2 or R3:

Eε(u) =
∫
D

1

2
|∇u|2 − 1

2
���ε × r · (iu∇ū − i ū∇u) + 1

4ε2
(|u|2 − ρTF(r))2, (2.1)

where ε is a small parameter, ���ε = �εez is a given vector parallel to the z direction,
r = (x, y, z), ���ε×r = (−�ε y, �εx, 0), ū is the complex conjugate of u, and ρTF(r)
is a regular prescribed function modelling a trapping potential. In the following, we
will use the notation (iu, ∇u) of the scalar product in C, to denote the term (iu∇ū −
i ū∇u)/2. The domain D is defined as

D = {ρTF(r) > 0} (2.2)

and the function ρTF is normalized in such a way that
∫
D ρTF = 1. The original mo-

tivation coming from experiments corresponds to ρTF(r) = ρ0 −(x2 +α2 y2 +β2z2),
where α is close to 1 and β is small. In order to understand the main difficulties of the
problem, we will start with a model case corresponding to a problem in R2 (formally
β = 0), where in fact r = (x, y), ρTF(r) = ρ0 − (x2 + y2), and D is thus a disc
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in R2. Then, we will focus on other types of functions ρTF for r in R2 and finally
address the original case of the experiments for the harmonic potential in R3.

The main issue is to analyze, according to the value of �ε, the properties of the
minimizers u when ε is small and determine the location of the zero set of u. This
will rely on an asymptotic expansion of the energy, and techniques introduced for
Ginzburg–Landau-type problems by Bethuel–Brezis–Helein [32] in 2D and Riviere
[131] in 3D, and then developed and extended by Jerrard [84], Jerrard–Soner [86],
and Sandier–Serfaty [138]. Vortices will be identified as balls in 2D or tubes in 3D
of characteristic size ε, containing the zero set of u around which the phase changes.

2.1.1 The two-dimensional setting

We will first address the case in which r lies in R2, and ρTF(r) = ρTF(x, y), so that
D is a two-dimensional domain.

The model case

In Chapter 3, we will study the minimizers u ∈ H1
0 (D, C) of (2.1) when ρTF(r) =

ρ0 − r2 and D given by (2.2) is the disc in R2 of radius
√

ρ0. We will make an
asymptotic expansion of the energy Eε in terms of ε, which will allow us to charac-
terize the critical value for which the minimizer exhibits n vortices and the location
of these vortices. This is in the spirit of the techniques of Ginzburg–Landau vortices
introduced by Bethuel–Brezis–Helein [32] in 2D, developed by Serfaty [143, 144]
and Sandier–Serfaty [138], and used for this problem in R2 by Ignat–Millot [80, 81].
If u is a minimizer with n vortices, then we will prove that as ε tends to 0,

Eε(u) = E(ε) +
(
πρ0n|log ε| − π�ε

2
nρ2

0

)
+ π

2
nρ0(n − 1) log �ε + min

R2n
w + Cn + o(1), (2.3)

where E(ε) is the leading-order term in ε representing the energy of the vortex-free
solution, Cn is an explicit constant which depends only on n, o(1) is a term which
tends to 0 as ε tends to 0, and

w(b1, . . . , bn) = −πρ0

∑
i �= j

log |bi − b j | + πρ0

2

∑
i

|bi |2. (2.4)

A solution with vortices is energetically favorable as soon as the second term in the
expansion becomes negative, that is, �ερ0 > 2|log ε|. This provides the value of the
critical velocity for the existence of vortices, and we prove that for �ε smaller than
this critical velocity, the minimizer does not exhibit vortices:

Theorem 2.1. Let uε be a sequence of minimizers of Eε in H1
0 (D) and assume that

�ε depends on ε in such a way that



2.1 Small ε problem 21

lim
ε→0

�ε

|log ε| = ω0. (2.5)

Then ω∗
0 = 2/ρ0 is a critical value in the sense that, if ω0 < ω∗

0 for any compact
subset K of D, if ε is smaller than some εK , then uε does not vanish in K . In addition,
as ε tends to 0, |uε| converges to

√
ρTF in L∞

loc(D), and

Eε(uε) = E(ε) + o(1), (2.6)

where E(ε) does not depend on uε or �ε.

If ω0 reaches the critical value ω∗
0, then the number of vortices in the system depends

on the next term in the expansion of �ε. The critical velocity for the existence of
vortices is determined by the fact that the leading term in the expansion (2.3) is the
same for n and n + 1 vortices:

Theorem 2.2. We assume a specific asymptotic form for the rotation �,

�ε = ω∗
0 |log ε| + ω1log|log ε|. (2.7)

Let uε be a sequence of minimizers of Eε in H1
0 (D):

(i) If ω1 < 0, then the conclusion of Theorem 2.1 holds.
(ii) If ωn

1 < ω1 < ωn+1
1 , with ωn

1 = 2(n − 1)/ρ0, for any compact subset K of D
containing a neighborhood of the origin, if ε is smaller than some εK , uε has
exactly n vortices pε

i of degree one in K . Moreover,

|pε
i | < C/

√
�ε for any i and |pε

i − pε
j | > C/

√
�ε,

where C is independent of ε. Let p̃ε
i = pε

i /
√

�ε. Then the configuration p̃ε
i

tends to minimize the energy w defined in R2n by (2.4).

The proof relies on the splitting of the energy introduced by Lassoued–Mironescu
[97], and a construction of an upper bound and a lower bound which provide the
energy expansion (2.3). The construction of the lower bound is made in two steps: the
first one provides an upper bound of the number of vortices (as in [136]) according
to the bound on the rotational velocity, that is, the bound on ω1. The second step
uses the techniques of bad discs introduced by Bethuel, Brezis, and Helein [32] and
allows one to localize the vortices and yields the renormalized energy w.

Let ηε be the minimizer of Eε with �ε = 0. Then the energy decouples into the
profile part ηε, the contribution of vortices, and the contribution of rotation:

Eε(u) = Eε(ηε) + Eηε (v), where Eηε (v) = Gηε (v) + Lηε (v), (2.8)

and Gηε (v) =
∫
D

η2
ε

2
|∇v|2 + η4

ε

4ε2
(|v|2 − 1)2, (2.9)
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Lηε (v) = −
∫
D

η2
ε�r⊥ · (iv, ∇v), (2.10)

where r⊥ = (−y, x). The term Gηε is very similar to the energy studied in [32], with
the addition of a weight η2

ε which is very close to ρTF. This part of the energy allows
us to define the vortex structure and provides the |log ε| term in the expansion, as
well as the renormalized energy. The rotation term provides the negative quantity
−π�ε

∑
i ρ2

TF(pε
i )/2. The vortices which contribute to the energy expansion are

located close to the origin (at distance of order 1/
√|log ε|) and thus the weight in

the expansion becomes the value of ρTF at zero, that is, ρ0. The presence of ρ2
TF in

the rotation term is a very special feature of the harmonic potential: it corresponds to
the fact that a primitive of rρTF(r) for our special choice of ρTF is −ρ2

TF/4.
Since the weight ρTF vanishes on the boundary of D, we get information only on

compact subsets of D and are not able to analyze vortices up to the boundary. This
is the topic of interesting open issues.

Other trapping potentials

The analysis is carried on in Chapter 4 with other functions ρTF(r) when r = (x, y)

still lies in R2 and D given by (2.2) is a domain in R2. We will address the case of
a nonradial function with a harmonic growth and a radial function whose support is
an annulus.

The case of the experiments is a harmonic potential with an inhomogeneity in the
x and y directions, namely ρTF(r) = ρ0−x2−α2 y2, with α �= 1. The results are very
similar to those of the previous section, except that now the energy expansion and
the critical velocity depend on α. This has been addressed by Ignat–Millot [80, 81].
The main difference with the case α = 1 lies in the fact that the vortex-free solution,
that is, the minimizer ηε of Eε under the condition that it does not vanish in D, is no
longer a real-valued function but has a globally defined phase Sε. Its modulus is very
close to ρTF. Due to the specific growth of ρTF, as ε tends to 0, this phase converges
to S, which is proportional to (α2 − 1)xy. If ρTF had another type of inhomogeneity
in x and y, this limit would not be so easy to identify and the expansion of energy
not so precise. In the splitting of energy, we use |ηε|ei S as a comparison function and
prove that (see Chapter 4, Theorem 4.1, for a precise statement)

Eε(u) = Eε(|η̃ε|ei S) +
(
πρ0n|log ε| − π�ε

1 + α2
nρ2

0

)
(2.11)

+ π

2
nρ0(n − 1) log �ε + min

R2n
w + Cn,α + o(1),

where

w(b1, . . . , bn) = −πρ0

∑
i �= j

log |bi − b j | + πρ0

1 + α2

∑
i

|bi |2α (2.12)
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and |r|2α = x2 + α2 y2. The critical velocities will now depend on α, as well as the
renormalized energy w, through the weighted norm |r|2α .

We also deal with a radial function ρTF with support in an annulus such as ρ0 +
(b−1)r2 −(k/4)r4 with b > 1+(3k2/4)1/3. We refer to BR0 \ B R1 as the domain D.
The special feature of this trapping potential is that vortices appear as giant vortices:
there is a degree in the annulus, but the vortices are in the inner disc. It is very
difficult both experimentally and mathematically to discriminate between a giant
vortex centered at the origin and several vortices of degree one, located close to
the origin in the region where the wave function is small. For this reason, we only
provide information about the circulation in the annulus, which has the effect of a
giant vortex. The critical velocity to nucleate a vortex is now of order 1, contrary to
the previous cases, where it was of order |log ε|:
Theorem 2.3. Let g0(d) = �1d2/2 − �d for d in Z,where �1 = ∫

D ρTF(r)/r2. Let
�d = �1(d − 1/2) for d ≥ 1 and �0 = 0. If uε is a sequence of minimizers of Eε,
and �d ≤ �ε < �d+1, then:

(i) Eε(uε) − Eε(ηε) → g0(d), as ε tends to 0.
(ii) There exists a subsequence ε → 0 and α ∈ C with |α| = 1 such that

uε

ηε

→ αeidθ in H1
loc(D), and

∣∣∣∣uε

ηε

∣∣∣∣ → 1, locally uniformly in D.

(iii) For every fixed r such that ∂ Br (0) ⊂ D, deg( uε

ηε
, ∂ Br ) = d for ε sufficiently

small.

For velocities �ε of order |log ε|, the pattern is quite different: vortices exist in
the annulus and they are arranged regularly on a specific circle as illustrated in Figure
1.6. We prove that the degree of the giant vortex is proportional to |log ε|, and we
characterize the circle where vortices appear in the annulus as the location of the
maximum of the function ξ(r)/ρTF(r), where

ξ(r) :=
∫ R0

r
ρTF(s)

(
s − 1

s�1

)
ds. (2.13)

The precise statement is given in Theorem 4.4.

2.1.2 The three-dimensional setting

We now address the case when D is an ellipsoid in R3. In Chapter 6, we study the
minimizers u ∈ H1

0 (D, C) of (2.1) when ρTF(r) = ρ0 − (x2 + α2 y2 + β2z2) and D
is given by (2.2). We want to make an asymptotic expansion of Eε as in the previous
cases, but the three-dimensional setting does not allow us to get as many terms in
the expansion. Our mathematical results deal mainly with the single-vortex solution
and are aimed at proving the bending property. We will see that the shape of vortices
depends on the elongation β in the z direction. We are able to determine the critical
velocity for which vortices are favorable, and their optimal shape.
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In this derivation, vortices can be represented by oriented curves, which are Lip-
schitz functions γ : (0, 1) → D. We are going to prove that if the minimizer has a
single singularity line γ , then the energy decouples into the energy of the vortex-free
solution E0(ε) and a contribution from the vortex line γ , that is, as ε tends to 0,

Eε(u) = E0(ε) + π |log ε|Eγ + o(|log ε|),

where

Eγ =
∫

γ

ρTF dl − �ε

(1 + α2)|log ε|
∫

γ

ρ2
TF dz. (2.14)

The energy of the vortex line γ contains a term due to the vortex length (first integral)
and one due to rotation (oriented integral since dz = dl ·ez), which tends to force the
vortex to be parallel to the z axis, while the other term wants to minimize the length.
This is why, according to the geometry of the trap, the shape of the vortex varies.
The rotation term becomes significant when �ε is of order |log ε|. This derivation is
justified using �-convergence techniques and the introduction of currents. Vortices
are identified through the study of the Jacobians, namely

Jv =
∑
j<k

vx j ∧ vxk . (2.15)

The convergence of Jacobians to a limiting current is proved and allows us to get
regularity on the limiting singularity line γ and define Eγ .

The next step is to study the minimizing curves of Eγ according to �ε. For fixed
�, if there are curves γ such that Eγ < 0, then a vortex is favorable in the system.
We find that indeed if β, which is related to the elongation of the condensate in (1.3),
is small, then the minimizing curve is not along the z axis, but bending. We also
analyze the properties of the local minimizers of Eγ (existence of S vortices as in
Figure 1.5) and relate them to experimental observations.

The main results can be summarized in the following theorem, which character-
izes the critical velocity below which the minimizer is vortex-free:

Theorem 2.4. Let �̄ = limε→0 �ε/(1 + α2)|log ε| and

�̄1 = inf{�̄, ∃γ with Eγ < 0}.

Then 1 < �̄1ρ0 < 5/4. For �̄ < �̄1, the global minimizer uε is asymptotically
vortex-free in D. For �̄ > �̄1, the minimizer has vortices. The straight vortex does
not minimize the reduced energy Eγ if β <

√
2/13.

2.2 Vortex lattice

The other main part of this book (Chapter 5) is dedicated to another regime, in which
the rotational velocity gets large: the condensate size increases with the velocity,
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vortices are no longer small balls, and their distance is of the same order as their
size. They are arranged on a triangular lattice, distorted towards the edges of the
condensate.

We consider the minimization of

ELLL(ψ) =
∫

R2

(1 − �2)

2
r2|ψ |2 + Na

2
|ψ |4 under

∫
R2

|ψ |2 = 1 (2.16)

for functions ψ(z) = f (z)e−�|z|2/2, where f is holomorphic. As before, we are
interested in the number and location of vortices. In this setting, we expect a vortex
lattice of characteristic spacing of order 1 and a condensate of characteristic size R
such that R4 is proportional to 1/(1 − �). The ball BR is the region where the wave
function is dominant. The results that we will present deal with an upper bound for
the energy, the lower bound remaining an open issue.

Theorem 2.5. Let � be a lattice, Q its unit cell. Assume that V = |Q| > π . Let

ψR(z) = AR

∏
j∈�∩BR

(z − j)e−�|z|2/2 (2.17)

with AR chosen such that ‖ψR‖L2(R2) = 1. Then as R tends to ∞,

|ψR(z)| ∗
⇀ ψ(z) = 1√

πσ
η(z)e−|z|2/(2σ 2), (2.18)

where

1

σ 2
= � − π

V
(2.19)

and η is a periodic function which vanishes at each point of �. In addition,
limR→+∞ ELLL(ψR) = ELLL(ψ). As σ tends to infinity, then

ELLL(ψ) ∼ (1 − �)σ 2 + 1

4

Nab

πσ 2
, where b = −

∫ |η|4
(−
∫ |η|2)2

. (2.20)

Here, −
∫

denotes the integral on a cell per unit volume.

The main feature of the periodic lattice is to modify the decay of the Gaussian from
e−�|z|2/2 to e−|z|2/2σ 2

, where σ depends on the volume through (2.19). We need to
choose the optimal σ in (2.20), which yields

σ 4(1 − �) = 1

4

Nab

π
. (2.21)

This value of σ indeed satisfies σ → +∞ as � tends to 1. The estimate of the energy
is thus

ELLL(ψ) ∼
�→1

√
Nab

π
(1 − �). (2.22)
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Let us emphasize the presence of the coefficient b: it takes into account the averaged
vortex contribution on each cell. As in the case of superconductors near Hc2 , for the
Abrikosov lattice, the optimal lattice minimizing the ratio b is the hexagonal one
[93], providing 1.16 as a value for b.

In fact, the function η is explicit and related to the Abrikosov problem [2, 93]

η(z) = e�z2/2e−�|z|2/2�(az, e2iπ/3) where a =
√√

3

2π
, (2.23)

�(v, τ) = 1

i

+∞∑
n=−∞

(−1)neiπτ(n+1/2)2
e(2n+1)π iv, v ∈ C . (2.24)

Given the invariance properties of the Theta function on a lattice, |η| is periodic on
the lattice aZ + ae2iπ/3Z. The function given by (2.23) minimizes the ratio

b = −
∫ |η|4

(−
∫ |η|2)2

among all periodic functions on a lattice which vanish once in each cell.
We construct a test function that should be close to the minimizer. It has a tri-

angular lattice in the region where the wave function is significant and is distorted
outside. The main observation is that modifying the location of the vortices from
a regular lattice can change the decay of the wave function and hence improve the
energy estimate.

Theorem 2.6. There exists a sequence of functions ψ� with ψ�e|z|2/2 holomorphic,
such that as � tends to 1,

ELLL(ψ�) ∼ 2
√

2

3

√
Nab

π
(1 − �). (2.25)

This estimate is indeed better than the one for the regular lattice (2.22). Let us jus-
tify what kind of slowly varying profile (better than the Gaussian) produces an im-
provement in the energy estimate: if one considers the minimization of ELLL(ψ)

without the holomorphic constraint on f , then the minimization process yields that
(1 − �2)|z|2/2 + Na|ψ |2 − µ = 0, where µ is the Lagrange multiplier due to the
constraint

∫ |ψ |2 = 1, so that |ψ | is the inverted parabola

α2(z) = 2

π R2

(
1 − |z|2

R2

)
1{|z|≤R}, R = √

µ =
(

2Na

π(1 − �)

)1/4

. (2.26)

The energy of such a test function is 2
√

2Na(1 − �)/π/3, that is, (2.25), but with-
out the coefficient b. The restriction to f = ψe�|z|2/2 being holomorphic prevents
us from achieving this specific inverted parabola. A distortion of the vortex lattice
provides a weak-star approximation of the inverted parabola but will modify the ra-
dius R by a coefficient b1/4 coming from the contribution of the lattice to the energy
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through the function η. This is why our upper bound contains b, and we believe that
the lower bound should as well.

Another approach to this problem is to introduce the so-called Fock–Bargmann
space [26, 110]

F =
{

f is holomorphic ,

∫
R2

| f |2e−�|z|2 < ∞
}

. (2.27)

This space is a Hilbert space endowed with the scalar product 〈 f, g〉F =∫
R2 f (z)g(z)e−�|z|2 . The projection of a general function g(z, z̄) onto F is explicit :

�(g) = �

π

∫
R2

e�zz′
e−�|z′|2 g(z′, z̄′). (2.28)

If g is a holomorphic function, then an integration by parts yields �(g) = g. Using
this expression, we are able to derive an equation for the minimizer

Theorem 2.7. If f ∈ F is such that ψ(z) = f (z)e−�|z|2/2 minimizes (2.16), then f
is a solution of the following equation:

�
(( (1 − �2)

2
|z|2 + Na| f |2e−|z|2 − µ

)
f
)

= 0, (2.29)

where µ is the Lagrange multiplier coming from the L2 constraint.

The equation for the minimizer allows us to derive that this minimizer cannot be a
polynomial:

Theorem 2.8. If f ∈ F is such that ψ(z) = f (z)e−�|z|2/2 minimizes (2.16), then f
has an infinite number of zeroes.

We expect that the minimizer is close to αηe−�|z|2/2, where η is the periodic
function on the lattice (2.23) and α the inverted parabola (2.26) with Na replaced by
Nab. Of course, this test function is not in our space of holomorphic functions, but
�(αη)e−�|z|2/2 is. We would like to get more information on the minimizer using
this kind of tool.

2.3 Flow around an obstacle

In Chapter 7, we address the problem of a superfluid flow around an obstacle. It can
be formulated as follows: understand the properties of the solutions of

�ψ − 2ic∂xψ + (ρ0 − |ψ |2)ψ = 0, (2.30)

for x = (x, y) in ω = R2 \ B1, where B1 is the obstacle, and ψ = 0 on ∂ B1. Here c
is the velocity of the flow at infinity and ρ0 some fixed number. If the flow is dissipa-
tionless, that is, for small c, we expect the existence of a stationary stable solution of
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this equation, while if c is increased, the flow becomes time-dependent and vortices
are nucleated. We expect the nonexistence of stationary solutions to hold. Our main
result consists in a rigorous proof of the existence of stationary solutions of (2.30)
for small c, such that ψ does not have vortices:

Theorem 2.9. There exists c0 > 0 such that for all c ∈ (0, c0), problem (2.30) has a
vortex-free solution ψc, that is, |ψc| > 0 in ω.

We also deal with a case closer to the experiments, in three dimensions, where ρ0 is a
function of position, and prove a similar theorem for small velocity. This setting and
our numerical simulations provide many open questions that we try to formulate.



3

Two-Dimensional Model for a Rotating Condensate

In this chapter, we want to study the shape of the minimizers u = uε ∈ H1
0 (D; C) of

Eε(u) =
∫
D

{
1

2
|∇u|2 − �r⊥ · (iu, ∇u) + 1

4ε2

(
|u|2 − ρTF(r)

)2
}

dx dy, (3.1)

where r = (x, y), r⊥ = (−y, x), (iu, ∇u) = i(ū∇u − u∇ū)/2, ε is a small pa-
rameter, and � is the given rotational velocity. We assume that ρTF(r) = ρ0 − r2,
D is the disc of radius R0 = √

ρ0 in R2 (so that ρTF = 0 on ∂D), and
∫
D ρTF = 1,

which prescribes the value of ρ0. The issue is to determine the number and location
of vortices according to the value of �.

As we have explained in the introduction, the energy formulation relies on two
reductions: a two-dimensional reduction and a bounded-domain reduction. The two-
dimensional reduction of the problem has been used in a number of physics papers
[35, 45, 106]. There, the minimizer is computed either numerically or using a special
ansatz (which corresponds mathematically to constructing an upper bound), and the
critical velocities for the nucleation of vortices are determined. The minimization in
a bounded domain D is not necessary to get the results, and a full two-dimensional
analysis in R2 taking into account the mass constraint has been performed by Ignat
and Millot [80, 81]. We follow their ideas for this simplified problem. For the ease of
presentation, we restrict here to the model case ρTF(r) = ρ0 − r2, but more general
functions ρTF can be dealt with, as we will see in Chapter 4.

We want to prove that for small �, the minimizer has no vortices, and as �

increases, determine the number and location of vortices. The analysis will be made
in the framework of the book of Bethuel, Brezis, Helein [32], described for this
setting in [12] and analyzed in Ignat–Millot [80, 81]: vortices are identified as balls
where u is small and in which there is a degree. The method relies on an asymptotic
expansion of the energy: each vortex located at pi provides an energy contribution
of order π |log ε|ρTF(|pi |), while the rotation term provides a negative counterpart:
−�ρ2

TF(|pi |)/2. A vortex becomes energetically favorable when the sum of these two
terms becomes negative; hence the critical velocity will be of order |log ε|. The main
tools that we are going to use have been developed by many authors in the context
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of Ginzburg–Landau vortices. Let us point out the contributions of Sandier–Serfaty
[134, 135, 136, 143, 144], summarized in the book [138], but also of Lassoued–
Mironescu [97] and André–Shafrir [22]. The main difference with previous work is
that the potential term ρTF vanishes on the boundary of the domain, and we will not
be able to say anything about vortices close to the boundary; hence we will have to
restrict our analysis to Dδ = {r ∈ D, dist(|r|2, ∂D) > δ}.

3.1 Main results

If the velocity is smaller than a critical velocity, we prove that there are no vortices
in the system:

Theorem 3.1. Let uε be a sequence of minimizers of Eε in H1
0 (D) and assume that

� depends on ε in such a way that

lim
ε→0

�

|log ε| = ω0. (3.2)

Then ω∗
0 = 2/ρ0 is a critical value in the sense that if ω0 < ω∗

0 , for any δ > 0, if ε

is smaller than some εδ , then uε does not vanish in Dδ . In addition, as ε tends to 0,
|uε| converges to

√
ρTF in L∞

loc(D), and

Eε(uε) = E(ε) + o(1), (3.3)

where E(ε) does not depend on uε or �.

If ω0 reaches the critical value ω∗
0, then the number of vortices in the system depends

on the next term in the expansion of �:

Theorem 3.2. We assume a specific asymptotic form for the rotation �:

� = ω∗
0 |log ε| + ω1log|log ε|. (3.4)

Let uε be a sequence of minimizers of Eε in H1
0 (D):

(i) If ω1 < 0, then the conclusion of Theorem 3.1 holds.
(ii) If ωn

1 < ω1 < ωn+1
1 , with ωn

1 = 2(n − 1)/ρ0, for any δ > 0, if ε is smaller than
some εδ , then uε has exactly n vortices pε

i of degree one in Dδ . Moreover,

|pε
i | < C/

√
� for any i and |pε

i − pε
j | > C/

√
�,

where C is independent of ε. Let p̃ε
i = pε

i /
√

�. Then the configuration p̃ε
i tends

to minimize the energy w defined in R2n by

w(b1, . . . , bn) = −πρ0

∑
i �= j

log |bi − b j | + πρ0

2

∑
i

|bi |2. (3.5)
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We have the following asymptotic expansion for the energy:

Eε(uε) = E(ε) + π

2
nρ0(n − 1 − ω1ρ0) log |log ε| (3.6)

+ min
R2n

w + Cn + o(1),

where E(ε) does not depend on uε, and Cn is an explicit constant that depends
only on n.

For ω0 > ω∗
0, we do not perform the analysis here, but we expect a limiting free-

boundary problem described in Open Problem 3.4 in Section 3.8, which gives rise
to two regions: the central region has a dense distribution of vortices and the outer
region has no vortices. The case of larger velocities, that is, of order c/ε2, will be
addressed in Chapter 5.

Our result does not include statements about vortices close to the boundary, since
they lie in a region where their contribution to the energy is smaller than our precision
of expansion: the energy contribution of vortices in D \ Dδ is of order δ, hence
very small. A more precise expansion would only allow the elimination of vortices
closer to the boundary, and different tools should be introduced in order to derive the
nonexistence of vortices for sufficiently small velocities:

Open Problem 3.1 There exists a constant C such that for � < C, minimizers of
Eε do not have vortices in D.

One may hope to get this result by proving the uniqueness of the minimizer for small
� and then using the rotational invariance. A first step is to get the nondegeneracy of
the solution at � = 0 and use an implicit function theorem to derive the uniqueness
for � sufficiently small. The result should hold in a more general sense, that is for
any velocity of order 1. For � larger, that is, of order |log ε|, yet smaller than the first
critical velocity, it is possible that the minimizer has vortices close to the boundary
in the region of low density, arranged on a circle for instance. At the moment, neither
numerical simulations nor analytical results give a hint.

3.1.1 Single-vortex solution and location of vortices

When the solution has a single vortex at the point p, the asymptotic expansion of the
energy is simplified:

Eε(uε) = E(ε) + π |log ε|ρTF(p) − π�ρ2
TF(p)/2 + O(1). (3.7)

The location of the vortex is determined by the minimum of E(p) = ρTF(p) −
�ρ2

TF(p)/(2|log ε|). For � small, the energy E(p) is a decreasing function of the
position p; hence the best situation is to have the vortex at the boundary, that is, no
vortex at all. For � larger, the energy E(p) has a local minimum when the vortex is
at the origin but the global minimum is at the boundary. For � even larger, the global
minimum is achieved for a vortex at the origin. From this, we see easily that there
are two critical velocities: one corresponds to the single vortex at the origin being a
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local minimizer and the next one a global minimizer. This latter corresponds to our
critical velocity ω∗

0, and the first vortex appears at the origin.
For a higher number of vortices, they are still very close to the origin (at distance

of order 1/
√|log ε|), and their precise location is determined by the minimization of

w. This has been studied by Gueron–Shafrir [76] and their results are consistent with
the experimental data such as those illustrated in Figure 1.3.

3.1.2 Ideas of the proof

The method relies on an asymptotic expansion of the energy: we have to construct
an upper bound and a lower bound for the energy. The first step is inspired by an
idea of Lassoued and Mironescu [97] and consists in removing from the energy the
contribution due to the inhomogeneity of ρTF.

We first analyze the energy minimizers ηε when � = 0. Up to a multiplication
of a complex number of modulus one, this minimizer is unique and real-valued, and
Eε(η) = Fε(η), where

Fε(η) =
∫
D

{
1

2
|∇η|2 + 1

4ε2
(|η|2 − ρTF(r))2

}
dx dy. (3.8)

The minimizer ηε of Fε is (up to a complex multiplier of modulus one) the unique
positive solution of

�ηε + 1

ε2
ηε(ρTF(r) − η2

ε) = 0 in D, ηε = 0 on ∂D. (3.9)

Moreover, η2
ε converges to ρTF in L2(D) and uniformly on any compact set, but there

is a boundary layer of size ε2/3 due to the bad convergence of the gradient. Then, we
define v = u/ηε and split the energy Eε into the energy of the density profile ηε and
a reduced energy of the complex phase. Thus, we get our key identity:

Eε(u) = Eε(ηε) + Eηε (v), where Eηε (v) = Gηε (v) + Lηε (v) (3.10)

and

Gηε (v) =
∫
D

{
η2

ε

2
|∇v|2 + η4

ε

4ε2
(|v|2 − 1)2

}
dx dy, (3.11)

Lηε (v) = −
∫
D

η2
ε�r⊥ · (iv, ∇v) dx dy. (3.12)

The term Gηε is very similar to the energy studied by [32], with the addition of a
weight. When ηε is replaced by ρTF, we will use the following notations

Eε(v) = EρTF(v), Gε(v) = GρTF(v), Lε(v) = LρTF(v). (3.13)

If the integration is not performed in D but in a smaller domain, it will be mentioned.
We will study the vortex structure of u through the analysis of the map v and the
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energies Gε and Lε. Due to the degeneracy of the weight close to the boundary,
difficulties arise in the region where ρTF is small. Hence our analysis will provide
information only in the region Dε = {ρTF > ν|log ε|−3/2} for some ν.

From (3.10), we expect to prove the following expansion of energy:

Eε(u) = Eε(ηε) +
(
πρ0n|log ε| − π�

2
nρ2

0

)
+ π

2
nρ0(n − 1) log � + min

R2n
w + C + o(1), (3.14)

where n is the number of vortices. The second term in this expansion yields the value
of the critical rotational velocity. Indeed, if it positive, it is better not to have vortices
in the system, while as soon as it gets nonpositive, vortices become favorable. The
third term in the expansion of the energy provides the next significant term in the
expansion of �; thus it is natural to assume a special behaviour for the rotational
velocity:

� = ω0|log ε| + ω1log|log ε|, (3.15)

so that ω1 will control the number of vortices.
Let us now explain how to derive (3.14). Using ηε as a test function and (3.10),

we immediately find that Eηε (v) is negative and Eηε (v,Dε) tends to 0 as ε tends to 0.
The next step in the proof consists in deriving a first lower bound, inspired by [136],
which allows us to characterize vortices through balls Bi centered at pi carrying
some degree di and some amount of energy:

Gε(v, Bi ) ≥ π |di ||log ε|ρTF(pi ). (3.16)

This definition of vortex balls was introduced by Sandier [133] and Jerrard [84]. We
find that as soon as � is bounded by C |log ε|, there is a finite collection Iε of such
vortex balls in the system. Outside these balls, |v| is close to 1, and we get an estimate
of the rotational energy Lε there, namely

Lε(v,Dε \ ∪i∈Iε Bi ) ∼ −π

2
�

∑
i∈Iε

diρ
2
TF(pi ). (3.17)

The term ρ2
TF is specific to the harmonic potential: it comes from an integration by

parts around the vortex balls, which requires a primitive of the function rρTF(r). In
the case of the harmonic potential, this primitive is proportional to ρ2

TF.
From (3.16)–(3.17) and Eηε (v,Dε) = o(1), we find that

∑
i∈Iε

ρTF(pi )

(
|log ε||di | − �ρ0

2
di

)
≤ o(1).

This provides the value of the critical velocity �c = 2|log ε|/ρ0, under which there
are no vortices in Dε. We also obtain that as soon as ω1 in (3.15) is bounded, the
number of vortex balls with nonzero degree is uniformly bounded in ε and they are
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located close to the origin. We also get some improved energy bounds that will allow
us to improve the vortex description, in particular

Gε(v,Dε) ≤ Cω1 |log ε|, Gε(v,Dε \ {|r | < 2|log ε|−1/6})) ≤ Cω1 log|log ε|.
(3.18)

The next step consists in refining the upper and lower bounds to deduce a better
expansion of the energy. This relies on a finer description of the vortex structure us-
ing the method of bad discs introduced by Bethuel, Brezis, and Helein [32]. These
bad discs are smaller than the vortex balls defined above. Their number is uniformly
bounded and they lie close to the origin. The main ingredients are the energy esti-
mates (3.18) and a local version of the Pohozaev identity. The clustering method of
[35] provides a new family of modified bad discs B(xε

j , ρ), j ∈ F̃ε, with ρ ∼ εα

for some α ∈ (0, 1), and CardF̃ε bounded. We identify vortices with the points xε
j :

outside the discs, |v| > 1/2, and v has nonzero degree Di on the circles ∂ B(xε
j , ρ).

Following methods introduced in [32], we are able to improve the lower bound
of the energy and evaluate the energy carried by each vortex,

Gε(v, B(xε
j )) ≥ πρTF(xε

j )|D j |log
ρ

ε
+ O(1), (3.19)

and the energy away from the vortices, which contains the interaction term

Gε(v, BR \ ∪ j∈F̃ε
B(xε

j )) ≥ π
∑
j∈F̃ε

ρTF(xε
j )D2

j |logρ| + WR,ε((xε
j , D j )) + O(1),

(3.20)

where WR,ε is a renormalized energy taking into account the interaction between
the points. The radius R is fixed at this stage of the proof; hence the error term is a
constant depending on R. It is only in the last step that we will let R tend to

√
ρ0.

The next step consists in constructing an upper bound with d vortices located at a
distance of order 1/

√|log ε| from the origin, on a lattice minimizing w, the expected
limit of WR,ε as R tends to

√
ρ0. The construction is inspired by [22].

Finally, the combination of the upper and lower bounds yields that for each j ,
D j = 1, CardF̃ε = d , and that the vortices are uniformly distributed at distance
1/

√|log ε| from the origin. We rescale the location of vortices and study the limit as
ε tends to 0 of

Eε(u) − Eε(ηε) −
(
πρ0n|log ε| − π�

2
nρ2

0

)
− π

2
nρ0(n − 1) log �.

Our lower bound is a function of R that we let tend to
√

ρ0 to obtain the expan-
sion (3.14).

This chapter is organized as follows: Section 3.2 contains the study of ηε and
the proof of (3.10). Then, in Section 3.3, we define the structure of vortex balls,
and obtain the first lower bounds (3.16)–(3.17) and the estimate (3.18). Section 3.4
is devoted to the construction of refined estimates of the vortex structure based on
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the analysis of bad discs [32] and (3.18). The lower bound proved in Section 3.5
provides the interaction term WR,ε. Then, in Section 3.6, we construct a test function
and obtain the upper bound. Finally, in Section 3.7, we combine our upper and lower
bounds to conclude with all the required estimates. Section 3.8 contains some open
questions.

3.2 Preliminaries

This section is devoted to the study of minimizers of the reduced energy Fε defined
by (3.8), the existence of minimizers of Eε, and the proof of the key identity (3.10),
which is a first step towards the energy expansion.

3.2.1 Determining the density profile

Firstly, we study the minimizers ηε of Fε, which provide the shape of the density
profile.

Proposition 3.3. Problem (3.9) admits a unique positive solution ηε, which is the
unique minimizer of Fε in H1

0 (D) up to a complex multiplier of modulus one. In
addition,

(i) ηε ∈ C∞(D) is radial;
(ii) 0 < ηε(r) ≤ maxD ρTF, and |∇ηε| ≤ C/ε;

(iii) Fε(ηε) ≤ C |log ε| and Fε(ηε, .) is bounded in L∞
loc(D).

(iv) There exists a constant C independent of ε such that

|ηε(r) −
√

ρTF(r)| ≤ Cε1/3
√

ρTF(r) ∀r ∈ D with dist(r, ∂D) ≥ ε1/3, (3.21)

where C > 0 is a constant independent of ε.

The proof of (i i i) relies on the expected size of the boundary layer, namely ε2/3.
There, ηε should be close to the solution of (1.16).

The assertion (iv) implies that |η2
ε(r) − ρTF(r)| is small with respect to ρTF(r)

itself at a small distance from the boundary of D.

Remark 3.4. We also have η2
ε → ρTF in C1,α

loc (D), ‖ηε − √
ρTF‖C1(K ) ≤ CK ε2, for

any compact subset K of D.

Proof of Proposition 3.3: The existence of a positive minimizer of Fε in H1
0 (D)

is standard. Since Fε(|η|) ≤ Fε(η), with equality if and only if η = |η|eiα , the
minimizer is a real positive function up to multiplication by a number of modulus
1 and satisfies the Euler–Lagrange equation. The uniqueness comes from [42]. Let
us recall the proof briefly. If ξ and η are two solutions, then w = ξ/η satisfies an
equation that we multiply by w − 1 and integrate over D to obtain that w ≡ 1.

(i): by the uniqueness, η must be radial.
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(i i): The maximum principle yields that η > 0 in D and η < maxD ρTF. The
estimate on the gradient follows from the equation and the Gagliardo–Nirenberg
inequality as in [33].

(i i i): Since ηε is the minimizer of Fε, we just need to construct a test function
for which we have a bound on the energy. We define ξ(r) = γ (ρTF(r)), where

γ (s) =
{√

s, if s > ε2/3,
s

ε1/3 , if s < ε2/3.

Using the coarea formula, we obtain

∫
D

|∇ξ |2 =
∫ R0

r0

γ ′(ρTF(r))2|∇ρTF|2 dr ≤ C
∫ ā

0
γ ′(s)2 ds ≤ C |log ε|.

For the other term,

∫
D

(ρTF − γ (ρTF)2)2 dr ≤
∫ ε2/3

0
(s − γ (s)2)2 ds ≤ Cε2.

Hence, the energy of this test function is bounded by |log ε|.
In order to get the energy bound on compact sets, we follow [97] and fix δ

such that Kδ = {x ∈ D, dist(x, ∂K ) < δ} is included in D. We have in par-
ticular Fε(ηε, Kδ \ K ) ≤ C |log ε|. Hence there exists a compact K ′ containing
K such that Fε(ηε, ∂K ′) ≤ C ′|log ε|. We can assume that K ′ = (r0, r1) and let
K ′

ε = (r0 + ε, r1 − ε). We consider the following test function:

vε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηε, in D \ K
′
,√

ρTF, in K ′
ε,√

tη2
ε(r0) + (1 − t)ρTF(r0 + ε), if r ∈ (r0, r0 + ε) and

ρTF(r) = (1 − t)ρTF(r0 + ε) + tρTF(r0),√
tη2

ε(r1) + (1 − t)ρTF(r1 − ε), in r ∈ (r1 − ε, r1) and

ρTF(r) = (1 − t)ρTF(r1 − ε) + ρTF(r1).

Using that Fε(ηε) ≤ Fε(vε) and that vε and ηε are equal in D \ K
′
, we obtain

Fε(ηε, K ′) ≤ Fε(vε, K ′). A computation of Fε(vε, K ′) together with the hypothesis
Fε(ηε, ∂K ′) ≤ C ′|log ε| gives the result.

(iv): (3.21) is obtained by restricting to small balls Bδ(x0) on which we construct
subsolutions and supersolutions in the spirit of [22]. We refer to [3] or [80, 81] for
more details. ��

3.2.2 Existence of a minimizer of Eε

The energy Eε is not positive but we obtain a bound from below thanks to an estimate
of the momentum term by the energy Fε:
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Lemma 3.5. For any u ∈ H1
0 (D), any σ > 0, we have∣∣∣∣�

∫
D

r⊥ · (iu, ∇u)

∣∣∣∣ ≤ σ Fε(u) + C

σ
�2 + C

σ 3
ε2�4, (3.22)

where C depends only on ρTF, hence on D, and Fε is given by (3.8).

Proof: We have∣∣∣∣�
∫
D

r⊥ · (iu, ∇u)

∣∣∣∣ ≤ σ

2

∫
D

|∇u|2 + �2

2σ

∫
D

|x |2|u|2

≤ σ

2

∫
D

|∇u|2 + �2

2σ

∫
D

|x |2ρTF + �2

2σ

∫
D

|x |2(|u|2 − ρTF)

≤ σ Fε(u) + �2

2σ

∫
D

|x |2ρTF + ε2�4

4σ 3

∫
D

|x |4. ��

This identity allows us to get the existence of minimizers of Eε and some simple
properties:

Proposition 3.6. Assume that � < �|log ε|. Then there exists a minimizer uε of Eε

in H1
0 (D). Moreover, uε satisfies

�uε − 2i�r⊥ · ∇uε + 1

ε2
(ρTF(x) − |uε|2)uε = 0. (3.23)

We have, for ε sufficiently small:

(a) Eε(uε) ≤ C�|log ε|, Fε(uε) ≤ C�|log ε|2.
(b) 0 < |uε(x)| ≤ √

ρTF(x) .
(c) ‖∇uε‖L∞(K ) ≤ Cω0,K ε−1 for any compact subset K .

Proof: Lemma 3.5 with σ = 1/2 implies that

Fε(u) ≤ 2Eε(u) + C�|log ε|2. (3.24)

The coercivity of Fε implies the existence of a minimizer for Eε. Using ηε as a test
function, we find that if uε is a minimizer, Eε(uε) ≤ Eε(ηε); hence from (3.24) and
Proposition 3.3, (a) holds. For (b), we write the equation for lε = |uε|2 and use the
maximum principle. Finally, (c) comes from the Gagliardo Nirenberg inequality. ��

3.2.3 Splitting the energy

We use the idea of [97] to decouple the energy Eε of any function u into that of the
profile ηε and the energy due to the vortex contribution and rotation.

Lemma 3.7. Let u ∈ H1
0 (D). Then v = u/ηε is well defined and (3.10) holds.
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Proof: Note that v is well defined in D, since ηε > 0. Since ηε satisfies (3.9), we
multiply it by ηε(1 − |v|2) and integrate:∫

D
(|v|2 − 1)(−1

2
�η2

ε − 1

ε2
η2

ε(ρTF − η2
ε) + |∇ηε|2) = 0. (3.25)

Moreover,

Eε(vηε) = Eε(ηε) + Eηε (v) + 1

2
|∇ηε|2(|v|2 − 1) + ηε∇ηε · ∇|v|2

+ 1

4ε2
(ρTF − η2

ε |v|2)2 − 1

4ε2
(ρTF − η2

ε)
2 − 1

4ε2
η4

ε(1 − |v|2)2.

This together with (3.25) yields (3.10). ��

3.3 Bounded number of vortices

Our aim is to find a lower bound for the energy, which provides a definition and
location of the vortex balls. This requires a bound on∫

D

1

2
|∇v|2 + 1

4ε2
(1 − |v|2)2.

Because of the degeneracy of the weight, we cannot estimate this integral in the
whole domain, and have to restrict to a subdomain at some distance of ∂D. Let

δ = δε = ν|log ε|−3/2 for some ν ∈ (1, 2) (3.26)

and
Dε := {x ∈ D : dist(|x |2, ∂D) > δε}, Nε := D \ Dε.

Theorem 3.1 will follow from the first part of this proposition:

Proposition 3.8. If uε is a minimizer of Eε and � is of the type (3.15):

(i) If either ω0 < ω∗
0 = 2/ρ0 or ω0 = ω∗

0 and ω1 < −K0, then for any δ > 0, for
ε sufficiently small, uε does not vanish in Dε. Moreover, |vε| tends to 1 locally
uniformly in Dε and Eε(vε,Dε) = o(1).

(ii) If ω0 = ω∗
0 and ω1 is bounded, then there is a finite collection {Bi = B(pi , si )}i∈Iε

of disjoint balls such that for vε = uε/ηε,{
x ∈ Dε : |vε| < 1 − |log ε|−5} ⊂

⋃
i∈Iε

Bi ; (3.27)

∑
i∈Iε

si < |log ε|−10; (3.28)

Let
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I0 = {
i ∈ Iε : di ≥ 0 and |pi | < |log ε|−1/6},

I∗ = {
i ∈ Iε : di ≥ 0 and |pi | ≥ |log ε|−1/6},

I− = {
i ∈ Iε : di < 0

}
.

Then there exists a constant Cω1 depending only on ω1 such that for ε sufficiently
small,

N0 :=
∑
i∈I0

|di | ≤ Cω1 , (3.29)

and if Bε = {
x ∈ D : ρTF(x) ≥ |log ε|−1/2}, then∑

i∈I∗∪I−, pi ∈Bε

|di | = 0, (3.30)

Gε(vε,Dε) ≤ Cω1 |log ε|, (3.31)

Gε(vε,Dε \ {|x | < 2|log ε|−1/6}) ≤ Cω1 log|log ε|. (3.32)

This section is devoted to the proof of this proposition.

3.3.1 First energy bound

Recall the definitions (3.10) and (3.13).

Proposition 3.9. For ε small, we have

|Eε(v,Dε) − Eηε (v,Dε)| → 0. (3.33)

Moreover,

Eε(v,Dε) ≤ c/|log ε|, (3.34)∫
Dε

ρTF

2
|∇v|2 + ρ2

TF

4ε2
(|v|2 − 1)2 ≤ C |log ε|2,∣∣∣∣�

∫
Dε

ρTFr⊥ · (iv, ∇v)

∣∣∣∣ ≤ C |log ε|2. (3.35)

Proof: By (3.10) and the fact that Eε(uε) ≤ Eε(ηε), we deduce that Eηε (v) ≤ 0. Let
us estimate the energy in Nε. We have

�

∫
Nε

η2
εr⊥ · (iv, ∇v) ≤ 1

2

∫
Nε

η2
ε |∇v|2 + 1

2
�2

∫
Nε

|v|2η2
ε |x |2

≤ 1

2

∫
Nε

η2
ε |∇v|2 + C�2

∫
Nε

[
η2

ε(|v|2 − 1) + (η2
ε − ρTF(r)) + ρTF(r)

]

≤ 1

2

∫
Nε

η2
ε |∇v|2 +

∫
Nε

η4
ε

4ε2
(|v|2 − 1)2 + C�4|Nε|ε2

+ C�2
(
ε
√

Fε(ηε)|Nε| + δε|Nε|
)

≤ 1

2

∫
Nε

η2
ε |∇v|2 +

∫
Nε

η4
ε

4ε2
(|v|2 − 1)2 + C�2δ2

ε . (3.36)
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In particular,
Eηε (v;Nε) ≥ −C/|log ε|,

and consequently,

Eηε (v;Dε) ≤ C/|log ε| (3.37)

for any minimizer. Using the estimates on (η2
ε −ρTF) in Dε from Proposition 3.3 (iv),

we conclude that (3.33) and (3.34) hold.
Note that by similar steps to (3.36) above, we obtain

�

∫
Dε

η2
εr⊥ · (iv, ∇v) ≤ 1

4

∫
Dε

η2
ε |∇v|2 + 1

8ε2

∫
Dε

η4
ε(|v|2 − 1)2 + C�2, (3.38)

and hence from (3.37) we obtain

Fε(v,Dε) =
∫
Dε

1

2
η2

ε |∇v|2 + η4
ε

4ε2
(|v|2 − 1)2 ≤ C�2 = O(|log ε|2), (3.39)

with C independent of ε. Moreover, the bounds (3.38), (3.39) also hold with ρTF
replacing η2

ε . ��

3.3.2 Vortex balls

With the help of (3.35), we may isolate the vortex balls in in Dε using the method of
Sandier [133] and Sandier and Serfaty [135]:

Proposition 3.10. For any � > 0 there exist positive constants ε0, C0 such that for
any ε < ε0, � ≤ �|log ε|, and any v satisfying (3.35), there exists a finite collection
{Bi = B(pi , si )}i∈Iε of disjoint balls such that (3.27)–(3.28) hold as well as∫

Bi

ρTF

2
|(∇ − i�r⊥)v|2 ≥ πρTF(pi )|di | (|log ε| − C0log|log ε|) , (3.40)

where

di = deg∂ Bi

(
v

|v|
)

for all i .

This implies that the set where u vanishes is contained in the balls Bi , and we have
a size estimate and an energy estimate. The reason to restrict to Dε is the need of an
estimate of ρTF from below.

Proof: We sketch the proof, since the details are minor modifications of the analo-
gous results in [135]. First, we complete the square in the gradient term and using
(3.35) obtain∫

Dε

(
ρTF

2
|(∇ − i�r⊥)v|2 + ρ2

TF

4ε2
(|v|2 − 1)2

)

≤ Eε(v,Dε) + 1

2
�2

∫
Dε

ρTF|x |2|v|2 + o(1) ≤ C |log ε|2.
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Since ρTF(x) ≥ δε for x ∈ Dε, using ρ = |v|, we have

δ2
ε

∫
Dε

(
1

2
|∇ρ|2 + 1

4ε2
(ρ2 − 1)2

)
≤ C |log ε|2,

and hence ∫
Dε

(
1

2
|∇ρ|2 + 1

4ε2
(ρ2 − 1)2

)
≤ C |log ε|5.

Let Dδ,t := {x ∈ Dε : ρ < 1 − t}, and γt = ∂Dδ,t . Using the coarea formula as in
[135], there exists t0 ∈ (0, |log ε|−5) and a finite set of balls B1, . . . , Bk with radii
s1, . . . , sk that cover γt0 , satisfying

∑
i si ≤ Cε|log ε|8. In Dε \ Dδ,t0 we may write

v = ρeiφ for a (possibly multivalued) H1
loc function φ(x).

Then we let the balls grow continuously, using the process described in [133],
[135], to obtain as a final lower bound∫

Bi \Dδ,t0

ρTF

2
|∇φ − �x|2 ≥ π

(
min

Bi
ρTF

)
|di |

(|log ε| − C0log|log ε|) ,

with constant C0 independent of ε. Note that the minimum of ρTF(x) over Bi is non-
increasing as the radii increase and as balls are merged. We end the process when
the sum of the radii of the balls equals |log ε|−10. By continuity of ρTF(x) we may
then replace the minimum of ρTF on each ball by the value at its center pi , making
an error that is small compared to ρTF(pi ) itself. This error can then be absorbed into
the coefficient of log|log ε|.

Finally,∫
Bi

ρTF

2
|(∇ − i�r⊥)v|2 ≥

∫
Bi \Dδ,t0

ρTF

2
(1 + ρ2 − 1)|∇φ − �r⊥|2

≥ (1 − C |log ε|−4)

∫
Bi \Dε,t0

ρTF

2
|∇φ − �r⊥|2

≥ (1 − o(1))
(
πρTF(pi )|di |(|log ε| − C0log|log ε|))

≥ πρTF(pi )|di |(|log ε| − C0log|log ε|),
for some constant C0 independent of ε.

Note that by slightly modifying our choice of δε we may be sure that no vortex
ball intersects the boundary ∂Dε. If this is not the case, by (3.28) we may find a con-
stant kε ∈ [1, 2) such that replacing δ′ = kεδε prevents vortex balls from intersecting
the boundary. ��

3.3.3 The rotation term

Lemma 3.11. Let ξε(r) = (ρ2
TF(r) − δ2

ε )/4. Note that ξε = 0 on ∂Dε. We have

�

∫
Dε\∪Bi

ρTF(r) r⊥ · (iv, ∇v) = �
∑

i

2πdi ξε(|pi |) + o(1). (3.41)
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Proof: In Dε\∪Bi , using Proposition 3.10, we may define w = v
|v| . Then (iv, ∇v) =

|v|2(iw, ∇w), and |∇v| ≥ |v||∇w| ≥ 1
2 |∇w| in Dε \ ∪Bi . Using the basic energy

estimate (3.35), and the fact that ρTF ≥ δε in Dε, we obtain∣∣∣∣
∫
Dε\∪Bi

ρTFr⊥ · (iv, ∇v) −
∫
Dε\∪Bi

ρTFr⊥ · (iw, ∇w)

∣∣∣∣
=

∣∣∣∣
∫
Dε\∪Bi

ρTF(|v|2 − 1)r⊥ · (iw, ∇w)

∣∣∣∣
≤ C

(∫
Dε

ρ2
TF(|v|2 − 1)2

)1/2

‖∇w‖2

≤ Cε|log ε|
(

1

minDε
ρTF

∫
Dε

ρTF|∇v|2
)1/2

≤ C
ε|log ε|2√

δε

. (3.42)

Using the definition of ξε, we have

ρTF(r)r⊥ = −∇⊥ξε(r).

Since |w| = 1, (iw, ∇w) is locally a gradient and is irrotational. Applying Stokes’
theorem, we obtain∫

Dε\∪Bi

ρTFr⊥ · (iw, ∇w) =
∫
Dε\∪Bi

∇ξε · (iw, ∇⊥w)

= −
∫

∂Dε

ξε(iw, ∂τw) +
∑

i

∫
∂ Bi

ξε(|x |) (iw, ∂τw)

=
∑

i

∫
∂ Bi

ξε(|x |) (iw, ∂τw).

The last equality uses that ξε = 0 on ∂Dε.
To conclude, we need to approximate ξε(|x |) by ξε(|pi |). This follows step by

step from Lemma II.3 of [134] (see also [80]). Note that |∇ξε| is uniformly bounded
independently of ε, and ‖∇w‖2 is bounded in terms of the energy using the same
trick as in (3.42) above. We claim that for each vortex ball Bi of radius si ,∣∣∣∣�

∫
∂ Bi

(ξε(|x |) − ξδ(|pi |)) (iw, ∂τw)

∣∣∣∣ ≤ |log ε|3
δε

si ,

This allows us to conclude (3.41). ��
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3.3.4 A lower bound expansion

Proof of Proposition 3.8: Note that because of (3.28),∣∣Lε(vε, ∪i∈Iε Bi )
∣∣ ≤ C |log ε|2

∑
i∈Iε

ri ≤ C |log ε|−8. (3.43)

Putting (3.34), (3.40), and (3.41) together, we obtain the lower bound

C |log ε|−1 ≥ Eε(v,Dε)

≥ π
∑

ρTF(pi )|di | (|log ε| − C0log|log ε|) − 2π�
∑

diξε(|pi |)

+1

2

∫
Dε\∪Bi

ρTF |∇v|2 +
∫
Dε

ρ2
TF

4ε2
(1 − |v|2)2 + o(1). (3.44)

In particular, this implies

π
∑

i, di >0

ρTF(pi )|di |
(
|log ε|(1 − ω0ρ0

2
+ ω0

2
|pi |2)

− log|log ε|(C0 + ω1

2
ρTF(|pi |))

)

+ π
∑

i, di <0

ρTF(pi )|di |
(

|log ε| + �

2

ρ2
TF(|pi |) − δ2

ρTF(|pi |)

)
≤ C |log ε|−1. (3.45)

1st case: If ω0 < ω∗
0 = 2/ρ0, then (3.45) implies that∑

i

ρTF(pi )|di | ≤ C |log ε|−2. (3.46)

Since in Dε, we can bound ρTF from below by δ = ν|log ε|−3/2, we find that∑
i |di | ≤ C |log ε|−1/2. But

∑
i |di | is an integer, so that it must be exactly

zero for ε sufficiently small and there are no vortices in Dε. One can use that∫
ρ2

TF(1 − |v|2)2/ε2 tends to zero to deduce that |v| tends to 1 locally uniformly
in Dε and Eε(vε,Dε) = o(1).

2nd case: If ω0 = ω∗
0 and ω1 < −K0, then (3.45) implies

π
∑

i, di >0

ρTF(pi )|di |
(
|log ε|ω0

2
|pi |2 − (C0 + ω1

2
ρTF(|pi |))log|log ε|

)

+ π
∑

i, di <0

ρTF(pi )|di ||log ε|

+ 1

2

∫
Dε\∪Bi

ρTF |∇v|2 +
∫
Dε

ρ2
TF

4ε2
(1 − |v|2)2 ≤ O(|log ε|−1). (3.47)
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If ω1 < −2C0/ρ0, similar arguments as in the previous case yield that there are no
vortices.

3rd case: ω0 = ω∗
0. If ω1 is too large, we are going to prove a bound on the number

of vortices. We let

Ĩ∗ = {i ∈ I∗ : pi ∈ Bε} , N∗ =
∑
i∈ Ĩ∗

|di |,

and
Ĩ− = {i ∈ I− : pi ∈ Bε} , N− =

∑
i∈ Ĩ−

|di |.

Since ρTF(pi ) ≥ |log ε|−1/2 for any i ∈ Ĩ∗ ∪ Ĩ− , we obtain from (3.47),∫
Dε\∪i∈Iε Bi

ρTF(x)|∇vε|2 + N∗|log ε|1/6 + N−|log ε|1/2

≤ C(1 + ω1)N0log|log ε| + O(|log ε|−1), (3.48)

which implies in particular

max{N∗, N−} ≤ C N0
log|log ε|
|log ε|1/2

(3.49)

for ε sufficiently small. We now show that N0 is uniformly bounded in ε. Consider
the sets

Iε =
[

|log ε|−1/6,

√
ρ0

2

]
and Jε = {

r ∈ Iε : ∂ Br ∩ (∪i∈Iε Bi ) = ∅}
.

By Proposition 3.10, Jε is a finite union of intervals satisfying |Iε \ Jε| ≤ |log ε|−10.
For each r ∈ Jε, |v| ≥ 1 − |log ε|−5, and hence we may define

D(r) := deg

(
v

|v| , ∂ Br (0)

)
.

Moreover,

|D(r)| =
∣∣∣∣∣

∑
|pi |<r

di

∣∣∣∣∣ ≥ N0 − N− = N0(1 − o(1)).

Writing v = |v|eiφ (for |x | = r ∈ Jε), we estimate the remaining term in the energy
as follows, using that in Jε, |v| ≥ 1 − |log ε|−5:

∫
Dε\∪Bi

ρTF

2
|∇v|2 ≥

∫
Jε

∫ 2π

0

ρTF(r)

2
|v|2|∇φ|2 r dθ dr

≥
∫
Jε

∫ 2π

0

ρTF(r)

2
|∇φ|2 r dθ dr(1 + o(1))
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≥ π

∫
Jε

ρTF(r)

r
(D(r))2 (1 + o(1))

≥ C N 2
0

∫
Jε

dr

r

≥ C N 2
0 log|log ε|(1 + o(1)). (3.50)

Returning to (3.47), we obtain

C1 N 2
0 − C2 N0 ≤ C

|log ε|−1

log|log ε| ,

with constants C1, C2 independent of ε. We conclude that N0 is bounded. Thus, we
infer from (3.49) that for ε small, N− and N∗ are zero; hence (3.30) holds.

Energy estimates

From Lemma 3.11 and (3.30), we deduce that for ε small,

Lε

(
vε,Dε \ ∪i∈Iε Bi

) ≥ −πρ0�

2

∑
i∈I0

ρTF(pi )|di |

− π�

2
|log ε|−1/2

∑
i∈I∗\ Ĩ∗

ρTF(pi )|di | + o(|log ε|−5)

≥ −π
∑
i∈I0

ρTF(pi )|di |
(|log ε| + ρ0ω1

2
log|log ε|)

− 2π

ρ0

∑
i∈I∗

ρTF(pi )|di ||log ε|1/2 + o(|log ε|−5).

We now use this estimate in (3.44) together with (3.43) to derive that∑
i∈I∗

ρTF(pi )|di ||log ε| ≤ C N0log|log ε|,

and hence with (3.29), we conclude that
∑

i∈I∗ ρTF(pi )|di ||log ε|1/2 = o(1) . Ac-
cording to (3.43), this implies

Lε(vε,Dε) = Lε

(
vε,Dε \ ∪i∈Iε Bi

) + o(1)

≥ −π
∑
i∈I0

ρTF(pi )|di |
(|log ε| + ρ0ω1

2
log|log ε|) + o(1).

Since Eε(vε,Dε) = Gε(vε,Dε) + Lε(vε,Dε) ≤ O(|log ε|−1), we have

Gε(vε,Dε) ≤ π
∑
i∈I0

ρTF(pi )|di |
(|log ε| + ρ0ω1

2
log|log ε|) + o(1) (3.51)

≤ Cω1 N0|log ε| ≤ Cω1 |log ε|.
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Let Aε = Dε \ B2|log ε|−1/6 . Matching (3.40) with (3.51), we finally obtain

Gε(vε,Aε) ≤ Gε(vε,Dε \ ∪i∈I0 Bi )

≤ π(
ρ0ω1

2
+ K0)

∑
i∈I0

ρTF(pi )|di |log|log ε| + o(1)

≤ Cω1 N0log|log ε| ≤ Cω1 log|log ε|. ��

3.4 Refined structure of vortices

Now that we know that for each ε there is a finite number of vortex balls, we want
to locate them better and prove that they are close to the origin. The analysis here
follows the ideas in [33] and [35], adapted to this setting by [81]. We prove that there
is a finite number of bad discs (bounded independently of ε). The main difficulty is
due to the presence in the energy of the weight function ρTF, which vanishes on ∂D
and does not allow one to extend the structure up to the boundary. This section will
be devoted to the proof of the following result:

Proposition 3.12. Assume that uε is a minimizer of Eε, vε = uε/ηε, and � is given
by (3.15).

(1) For any R ∈
(√

ρ0
2 ,

√
ρ0

)
there exists εR > 0 such that for any ε < εR,

|vε| ≥ 1

2
in BR \ B √

ρ0
2

.

(2) There exist some constants N ∈ N, λ0 > 0, and ε0 > 0 (that depend only on ω1)
such that for any ε < ε0, there exists a finite collection of points

{
xε

j

}
j∈Fε

⊂ B √
ρ0
4

such that Card(Fε) ≤ N and

|vε| ≥ 1

2
in B √

ρ0
2

\
(
∪ j∈Fε

B(xε
j , λ0ε)

)
.

Remark 3.13. The statement of Proposition 3.12 also holds if the radius
√

ρ0
2 is re-

placed by an arbitrary r ∈ (0, R), but then the constants in Proposition 3.12 depend

on r. For simplicity, we fix r =
√

ρ0
2 .

The following proposition is a summary of the properties of bad discs that we
will use for the lower bound:

Proposition 3.14. Let 0 < β < µ < 1 be given constants such that µ := µN+1 > β

and let {xε
j } j∈Jε be the collection of points given by (2) in Proposition 3.12. There

exists 0 < ε1 < ε0 such that for any ε < ε1, we can find F̃ε ⊂ Fε and ρ > 0
satisfying
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(i) λ0ε ≤ εµ ≤ ρ ≤ εµ < εβ ,
(ii) |vε| ≥ 1

2 in B √
ρ0
2

\ ∪ j∈F̃ε
B(xε

j , ρ),

(iii) |vε| ≥ 1 − 2
|log ε|2 on ∂ B(xε

j , ρ) for every j ∈ F̃ε,

(iv)
∫
∂ B(xε

j ,ρ)
|∇vε|2 + 1

2ε2 (1 − |vε|2)2 ≤ C(β,µ)
ρ

for every j ∈ F̃ε,

(v) |xε
i − xε

j | ≥ 8ρ for every i, j ∈ F̃ε with i �= j .

Moreover, for each j ∈ F̃ε, we have

D j := deg

(
vε

|vε| , ∂ B(xε
j , ρ)

)
�= 0 and |D j | ≤ C (3.52)

for a constant C independent of ε.

3.4.1 Some local estimates

Our first lemma relies on the Pohozaev identity and will play a similar role as Theo-
rem III.2 in [33]. In our situation, we derive only local estimates as in [35]. In the se-

quel, R denotes some arbitrary radius in [
√

ρ0
2 ,

√
ρ0 ) and we will write R′ = R+√

ρ0
2 .

Lemma 3.15. For any 2
3 < α < 1, there exists a positive constant CR,α such that

1

ε2

∫
B(x0,ε

α)

(1 − |vε|2)2 ≤ CR,α for any x0 ∈ BR.

Proof: We proceed in several steps.
Step 1. We claim that

Fε(uε, BR′) ≤ CR |log ε|. (3.53)

Indeed, since uε = ηεvε, and ηε is bounded below away from the boundary, we get
that∫

BR′
|∇uε|2 ≤ CR

(
min
BR′

ρTF

)−1 ∫
BR′

ρTF(x)|∇vε|2 + CR

∫
BR′

|∇ηε|2 ≤ CR |log ε|.

We also have

1

ε2

∫
BR′

(ρTF(x) − |uε|2)2 ≤ C

ε2

∫
BR′

[
(ρTF(x) − η2

ε)
2 + η4

ε(1 − |vε|2)2
]

≤ C

ε2

∫
BR′
(ρTF(x) − η2

ε)
2 + CR

ε2

∫
BR′

ρ4
TF(x)(1 − |vε|2)2

≤ CR |log ε|
because of Proposition 3.3 (i i i) and (3.31). Therefore (3.53) follows.
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Step 2. We are going to show that one can find a constant CR,α > 0, independent of
ε, such that for any x0 ∈ BR , there is some r0 ∈ (εα, εα/2+1/3) satisfying

Fε (uε, ∂ B(x0, r0)) ≤ CR,α

r0
.

By contradiction, assume that for all M > 0, there is xM ∈ BR such that

Fε (uε, ∂ B(xM , r)) ≥ M

r
, ∀r ∈ (εα, εα/2+1/3). (3.54)

Without loss of generality, we may assume that B(xM , εα/2+1/3) ⊂ BR′ . Integrating
(3.54) over r ∈ (εα, εα/2+1/3), we derive that

Fε (uε, BR′) ≥ M
∫ εα/2+1/3

εα

dr

r
= M(−α/2 + 1/3)|log ε|,

which contradicts Step 1 for M large enough.

Step 3. Fix x0 ∈ BR and let r0 ∈ (εα, εα/2+1/3) be given by Step 2. As in Step 2, we
may assume that B(x0, r0) ⊂ BR′ . We have

−�uε = 1

ε2
(ρTF(x0) − |uε|2)uε + 1

ε2
(ρTF(x) − ρTF(x0))uε + 2i�r⊥ · ∇uε.

(3.55)

As in the proof of the Pohozaev identity, we multiply the various terms in (3.55) by
(x − x0) · ∇ūε, add the conjugate, and integrate by parts to get∫

B(x0,r0)

−�uε · [(x − x0) · ∇uε] + c.c. = r0

∫
∂ B(x0,r0)

|∇uε|2 − 2r0

∫
∂ B(x0,r0)

∣∣∣∣∂uε

∂ν

∣∣∣∣
2

(3.56)

and

1

ε2

∫
B(x0,r0)

(ρTF(x0) − |uε|2)uε · [(x − x0) · ∇uε] + c.c.

= 1

ε2

∫
B(x0,r0)

(ρTF(x0) − |uε|2)2 − r0

2ε2

∫
∂ B(x0,r0)

(ρTF(x0) − |uε|2)2 (3.57)

(where ν is the outer normal vector to ∂ B(x0, r0)). From (3.55), (3.56), and (3.57)
we derive that

1

ε2

∫
B(x0,r0)

(ρTF(x0) − |uε|2)2 ≤ C

(
r0

∫
∂ B(x0,r0)

|∇uε|2

+ r0

∫
∂ B(x0,r0)

ε−2(ρTF(x0) − |uε|2)2 + r0ε
−2

∫
B(x0,r0)

|ρTF(x) − ρTF(x0)||∇uε|

+ �r0

∫
B(x0,r0)

|∇uε|2
)

.
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Then we estimate each integral term in the right hand side of the previous inequality.
According to (3.53), we have∫

∂ B(x0,r0)

(ρTF(x0) − |uε|2)2 ≤ C
∫

∂ B(x0,r0)

(ρTF(x) − |uε|2)2 + CRε
3
2 α+1,

�r0

∫
B(x0,r0)

|∇uε|2 ≤ �r0 Fε(uε, BR′) ≤ CR εα/2+1/3|log ε|2,

and

r0ε
−2

∫
B(x0,r0)

|ρTF(x) − ρTF(x0)||uε||∇uε| ≤ CR r2
0 ε−2

∫
B(x0,r0)

|∇uε|

≤ CR r3
0 ε−2[Fε(uε, BR)]1/2 ≤ CR ε

3
2 α−1|log ε|1/2

(here we use that |ρTF(x) − ρTF(x0)| ≤ CR r0 for any x, x0 ∈ BR′ ). We finally get
that

1

ε2

∫
B(x0,r0)

(ρTF(x0) − |uε|2)2 ≤ CR,α

(
1 + r0 Fε (uε, ∂ B(x0, r0))

)
for some constant CR,α independent of ε. By Step 2, we conclude that

1

ε2

∫
B(x0,ε

α)

(ρTF(x0) − |uε|2)2 ≤ CR,α. (3.58)

Using the estimates for ηε, we have

1

ε2

∫
B(x0,ε

α)

(1 − |vε|2)2 ≤ CR

ε2

∫
B(x0,ε

α)

(η2
ε − |uε|2)2

≤ CR

ε2

∫
B(x0,ε

α)

(ρTF(x) − |uε|2)2 + o(1)

≤ CR

ε2

∫
B(x0,ε

α)

(ρTF(x0) − |uε|2)2 + o(1) ≤ CR,α,

and we conclude with (3.58). ��

3.4.2 Bad discs

The next result will allow us to define the notion of a bad disc as in [33].

Proposition 3.16. There exist positive constants λR and µR such that if

1

ε2

∫
BR′∩B(x0,2l)

(1 − |vε|2)2 ≤ µR with x0 ∈ BR , l
ε

≥ λR ,

then |vε| ≥ 1/2 in BR′ ∩ B(x0, l).
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We refer to [32] for the proof, which relies on the fact that there exists a constant
CR > 0 independent of ε such that

|∇vε| ≤ CR

ε
in BR′ .

Definition 3.17. For x ∈ BR , we say that B(x, λRε) is a bad disc if

1

ε2

∫
BR′∩B(x,2λRε)

(1 − |vε|2)2 ≥ µR .

Now we can give a local version of Proposition 3.12. We will see that Lemma 3.15
plays a crucial role in the proof.

Proposition 3.18. Let 2
3 < α < 1. There exist positive constants NR,α and εR,α such

that for every ε < εR,α and x0 ∈ BR one can find x1, . . . , xNε ∈ B(x0, ε
α) with

Nε ≤ NR,α satisfying

|vε| ≥ 1

2
in B(x0, ε

α) \
(
∪Nε

k=1 B(xk, λRε)
)

.

Proof: We follow the ideas in [33], Chapter IV. First, choosing ε small enough, we
may assume that B(x0, ε

α) ⊂ BR′ . Then, we use the covering lemma to obtain a
family of discs

{
B(xi , λRε)

}
i∈F such that

⎧⎪⎪⎨
⎪⎪⎩

xi ∈ B(x0, ε
α),

B
(

xi ,
λRε

4

)
∩ B

(
x j ,

λRε
4

)
= ∅ ∀i �= j ,

B(x0, ε
α) ⊂ ⋃

i∈F B(xi , λRε).

(3.59)

We denote by F ′ the set of indices i ∈ F such that B(xi , λRε) is a bad disc. We
derive from Proposition 3.16 that

µR Card(F ′) ≤
∑
i∈F

1

ε2

∫
BR′∩B(xi ,2λRε)

(1 − |vε|2)2 ≤ C

ε2

∫
B(x0,ε

α)

(1 − |vε|2)2,

where C is some absolute constant. The conclusion now follows by Lemma 3.15. ��
Remark 3.19. The proof of Proposition 3.18 implies that any collection of balls{

B(xi , λRε)
}

i∈F satisfying (3.59) cannot contain more than NR,α bad discs.

3.4.3 No degree-zero vortex

We need the following lemma to prove that vortices of degree zero do not occur. The
main ingredients in the proof come from [35].
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Lemma 3.20. Let D > 0, 0 < β < 1, and γ > 1 be given constants such that
γβ < 1. Let 0 < ρ < εβ be such that ργ > λRε. We assume that for x0 ∈ BR,

(i)
∫
∂ B(x0,ρ)

|∇vε|2 + 1
2ε2 (1 − |vε|2)2 < D

ρ
,

(ii) |vε| ≥ 1
2 on ∂ B(x0, ρ),

(iii) deg
(

vε

|vε | , ∂ B(x0, ρ)
)

= 0.

Then we have

|vε| ≥ 1

2
in B(x0, ρ

γ ).

Proof: The proof consists in constructing a comparison function as in [35], which
allows us to obtain ∫

B(x0,ρ)

|∇vε|2 + 1

2ε2
(1 − |vε|2)2 ≤ Cβ,R . (3.60)

We will not repeat it here. We deduce that∫ ρ

2ργ

(∫
∂ B(x0,s)

|∇vε|2 + 1

2ε2
(1 − |vε|2)2

)
ds ≤ Cβ,R .

Since
∫ ρ

2ργ
ds

s|logs|1/2 ≥ Cγ |log ε|1/2, we derive that for small ε there exists s0 ∈
[2ργ , ρ] such that∫

∂ B(x0,s0)

|∇vε|2 + 1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

s0|logs0|1/2
.

Repeating the arguments used to prove (3.60), we find that∫
B(x0,s0)

|∇vε|2 + 1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

|logs0|1/2
.

In particular,
1

ε2

∫
B(x0,2ργ )

(1 − |vε|2)2 = o(1),

and the conclusion follows by Proposition 3.16. ��
We now obtain as in [35] Proposition IV.3 the following result, which provides

an estimate of the energy contribution of any vortex.

Proposition 3.21. Let x0 ∈ BR and 2
3 < α < 1. Assume that |vε(x0)| < 1

2 . Then
there exists a positive constant CR,α (that depends only on R, α, and ω1) such that∫

B(x0,ε
α)

|∇vε|2 ≥ CR,α|log ε|.
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Proof: Let NR,α and x1, . . . , xNε ∈ B(x0, ε
α) be as in Proposition 3.18. Let

δα = α1/2 − α

3(NR,α + 1)
,

and for k = 0, . . . , 3NR,α + 2 we consider

αk = α1/2 − kδα , Ik = [εαk , εαk+1 ], and Ck = B(x0, ε
αk+1) \ B(x0, ε

αk ).

Then there is some k0 ∈ {1, . . . , 3NR,α + 1} such that

Ck0 ∩
(
∪Nε

j=1 B(x j , λRε)
)

= ∅. (3.61)

Indeed, since Nε ≤ NR,α and 2λRε < |Ik | for small ε, the union of Nε intervals of
length 2λRε,

∪Nε

j=1(|xi − x0| − λRε, |xi − x0| + λRε),

cannot intersect all the intervals Ik of disjoint interior, for 1 ≤ k ≤ 3NR,α + 1. From
(3.61) we deduce that

|vε(x)| ≥ 1

2
∀x ∈ Ck0 .

Therefore, for every ρ ∈ Ik0 ,

dk0 = deg

(
vε

|vε| , ∂ B(x0, ρ)

)

is well defined and does not depend on ρ.
We claim that

dk0 �= 0. (3.62)

By contradiction, we suppose that dk0 = 0. According to (3.31),∫
B 2

√
ρ0+R
3

|∇vε|2 + 1

2ε2
(1 − |vε|2)2 ≤ CR |log ε|.

Using the same argument as in Step 2 of the proof of Lemma 3.15, there is a constant
CR,α such that∫

∂ B(x0,ρ0)

|∇vε|2 + 1

2ε2
(1 − |vε|2)2 ≤ CR,α

ρ0
for some ρ0 ∈ Ik0 .

According to Lemma 3.20 (where β = αk0+1 and γ = αk0−1

αk0
), we should have

|vε(x0)| ≥ 1
2 , which is a contradiction.

By (3.62), we obtain for every ρ ∈ Ik0 ,

1 ≤ |dk0 | = 1

2π

∣∣∣∣
∫

∂ B(x0,ρ)

1

|vε|2
(
vε ∧ ∂vε

∂τ

)∣∣∣∣ ≤ C
∫

∂ B(x0,ρ)

|∇vε|
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(we use that 2 ≥ |vε| ≥ 1
2 in Ck0 ). The Cauchy–Schwarz inequality yields∫

∂ B(x0,ρ)

|∇vε|2 ≥ C

ρ
∀ρ ∈ Ik0

and the conclusion follows by integrating over Ik0 . ��

3.4.4 Proof of Proposition 3.12

Part (1) in Proposition 3.12 follows directly from Lemma 3.22 below.

Lemma 3.22. There exists a constant εR > 0 such that for any 0 < ε < εR,

|vε| ≥ 1

2
in BR \ B √

ρ0
5

.

Proof: First, we fix some α ∈
(

2
3 , 1

)
. We proceed by contradiction. Suppose that

there is some x0 ∈ BR \ B √
ρ0
5

such that |vε(x0)| < 1/2. Then for any ε sufficiently

small, we have B(x0, ε
α) ⊂ Dε \ {|x | < 2|log ε|−1/6} and therefore, by (3.32), we

get that∫
B(x0,ε

α)

|∇vε|2 ≤ CR Gε(vε,Dε \ {|x | < 2|log ε|−1/6}) ≤ CR log|log ε|,

which contradicts Proposition 3.21 for ε small enough. ��
Proof of (2) in Proposition 3.12. We fix some 2

3 < α < 1. As in the proof of Propo-
sition 3.18, we consider a finite family of points {x j } j∈F satisfying

x j ∈ B √
ρ0
2

B

(
xi ,

λ0ε

4

)
∩ B

(
x j ,

λ0ε

4

)
= ∅ ∀i �= j ,

B √
ρ0
2

⊂
⋃
j∈J

B
(
x j , λ0ε

)
,

where λ0 := λ√
ρ0
2

(defined in Proposition 3.16 with R =
√

ρ0
2 ) and we denote by Fε

the set of indices j ∈ F such that B(x j , λ0ε) contains at least one point y j satisfying

|vε(y j )| <
1

2
. (3.63)

Obviously, B(x j , λ0ε) is a bad disc when j ∈ F . Applying Lemma 3.22 (with R =
3
√

ρ0
4 ), we infer that there exists ε0 such that for any 0 < ε < ε0,

B(x j , λ0ε) ⊂ B √
ρ0
4

for any j ∈ Fε. (3.64)
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Then it remains to prove that CardFε is bounded independently of ε. Using Proposi-

tion 3.21 (with R =
√

a0
2 ), we derive that for every j ∈ Fε and any point y j satisfying

(3.63) in the ball B(x j , λ0ε),∫
B(x j ,2εα)

|∇vε|2 ≥
∫

B(y j ,ε
α)

|∇vε|2 ≥ Cα|log ε| (3.65)

for some positive constant Cα that depends only on α. For ε small enough, we define

W =
⋃
j∈Jε

B(x j , 2εα) ⊂ B √
ρ0
3

.

We claim that there is a positive integer Mα independent of ε such that any y ∈ W
belongs to at most Mα balls in the collection {B(x j , 2εα)} j∈Jε . Indeed, for each
y ∈ W , let

Ky = {
j ∈ Jε : y ∈ B(x j , 2εα)

}
.

Then, for every j ∈ Ky ,

x j ∈ B(y, 2εα) ⊂ B(y, εα′
) ⊂ B √

ρ0
2

with α′ = 1

2

(
α + 2

3

)
. (3.66)

The family of bad discs {B(x j , λ0ε)} j∈Ky is a subcover of B(y, εα′
) satisfying (3.59)

and therefore, by Remark 3.19,

Card(Ky) ≤ Mα

for Mα = N√
ρ0/2,α′ . From (3.65), we deduce that∫

B √
ρ0
2

|∇vε|2 ≥
∫

W
|∇vε|2 ≥ 1

Mα

∑
j∈Fε

∫
B(x j ,2εα)

|∇vε|2 ≥ CαCard(Fε)|log ε|.

(3.67)

On the other hand, we know by (3.31),∫
B √

ρ0
2

|∇vε|2 ≤ C
∫

B √
ρ0
2

ρTF(x)|∇vε|2 ≤ C |log ε| (3.68)

for a constant C independent of ε. Matching (3.67) and (3.68), we conclude that
CardFε is uniformly bounded. ��
Proof of Proposition 3.14: We proceed exactly as in [143]. By Proposition 3.12, we
have for ε small enough,

∪ j∈Jε B(xε
j , λ0ε) ⊂ B √

ρ0
3

.

From (iii) in Proposition 3.10, there exists a radius rε ∈ (
√

ρ0
3 ,

√
ρ0
2 ] such that
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B̄i ∩ ∂ Brε = ∅ for every i ∈ Iε. (3.69)

Hence we have
|vε| ≥ 1 − |log ε|−5 on ∂ Brε .

The existence of a subset F̃ε ⊂ Fε satisfying (i)–(v) can now be proved identically
as Proposition 3.2 in [143]. It remains to prove (3.52). From the proof of Proposition
3.12, we know (by construction) that each disc B(xε

k , λ0ε), k ∈ Fε, contains at least
one point yk such that |vε(yk)| < 1

2 . Therefore each disc B(xε
j , ρ), j ∈ F̃ε, contains

at least one of the yk’s with |xε
j − yk | < λ0ε. Assume now that D j = 0. By Lemma

3.20 with γ = µ−1/2, it would lead to |vε| ≥ 1
2 in B(xε

j , ρ
γ ) and then |vε(yk)| ≥ 1

2
for ε small enough, which is impossible. We also obtain a bound on the degrees D j :

|D j | = 1

2π

∣∣∣∣∣
∫

∂ B(xε
j ,ρ)

1

|vε|2
(
vε ∧ ∂vε

∂τ

)∣∣∣∣∣ ≤ C‖∇vε‖L2(∂ B(xε
j ,ρ))

√
ρ ≤ C

by (iv). ��

3.5 Lower bound

In this section, we obtain various lower energy estimates for vε in terms of the vortex
structure defined in Proposition 3.14. We start by proving a lower bound on the gra-
dient term away from the vortices, which brings out the interaction between vortices
and eventually the lower bound for the whole energy. The method is based on the
techniques developed in [33, 81, 143]. To avoid the difficulties due to the degeneracy
of ρTF close to the boundary, the estimates will be proved in BR for an arbitrary ra-
dius R ∈ [

√
ρ0/2,

√
ρ0 ). To emphasize the possible dependence on R in the “error

term,” we will denote by OR(1) (respectively oR(1)) any quantity that remains uni-
formly bounded in ε for fixed R (respectively any quantity that tends to 0 as ε → 0
for fixed R).

Proposition 3.23. For any R ∈ [
√

ρ0/2,
√

ρ0 ), we have

Eε(vε,Dε) ≥ π

nε∑
j=1

D2
j ρTF(xε

j )|log ρ| + π

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε

−π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j + WR,ε + OR(1), (3.70)

where

WR,ε

(
(xε

1, D1), . . . , (xε
nε

, Dnε )
) = −π

∑
i �= j

Di D j ρTF(xε
j )log|xε

i − xε
j |

− π

nε∑
j=1

D j�R,ε(xε
j )
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and �R,ε is the unique solution of⎧⎨
⎩

div
(

1
ρTF

∇�R,ε

)
= − ∑nε

j=1 D j ρTF(xε
j ) ∇

(
1

ρTF

)
· ∇

(
log|x − xε

j |
)

in BR,

�R,ε = − ∑nε

j=1 D j ρTF(xε
j )log|x − xε

j | on ∂ BR.

(3.71)

Moreover, if ρ
|xε

i −xε
j | → 0 as ε → 0 for any i �= j then the term OR(1) in (3.73) is in

fact oR(1). We also have

Eε(vε,Dε) ≥ π

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε
− π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j + O(1). (3.72)

Remark 3.24. We point out that the dependence on R in the interaction term WR,ε

appears only in the function �R,ε.

Let us start with the estimate on the gradient term, which provides the interaction
between vortices:

Proposition 3.25. For any R ∈ [
√

ρ0/2,
√

ρ0 ), let �ρ = BR \ ∪nε

j=1 B(xε
j , ρ). Then

1

2

∫
�ρ

ρTF|∇vε|2 ≥ π

nε∑
j=1

D2
j ρTF(xε

j )|logρ| + WR,ε

(
(xε

i , Di )
) + OR(1). (3.73)

Proof: We consider the solution �ρ of the linear problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

div
( 1

ρTF
∇�ρ

) = 0 in �ρ ,

�ρ = 0 on ∂ BR ,

�ρ = const. on ∂ B(xε
j , ρ),∫

∂ B(xε
j ,ρ)

1
ρTF

∂�ρ

∂ν
= 2π D j for j = 1, . . . , nε,

and �R,ε the solution of{
div

( 1
ρTF

∇�R,ε

) = 2π
∑nε

j=1 D j δxε
j

in BR,

�R,ε = 0 on ∂ BR .
(3.74)

For x ∈ �ρ , we let wε(x) = vε(x)
|vε(x)| and

S =
(

−wε ∧ ∂wε

∂x2
+ 1

ρTF

∂�ρ

∂x1
, wε ∧ ∂wε

∂x1
+ 1

ρTF

∂�ρ

∂x2

)
.

We easily check that div S = 0 in �ρ and
∫
∂ BRε

S · ν = ∫
∂ B(xε

j ,ρ)
S · ν = 0. By

Lemma I.1 in [33], there exists H ∈ C1(�ρ) such that S = ∇⊥ H and hence we can
write the Hodge–de Rham type decomposition
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wε ∧ ∇wε = 1

ρTF
∇⊥�ρ + ∇ H.

Consequently,∫
�ρ

ρTF(x)|∇wε|2 ≥
∫

�ρ

1

ρTF(x)
|∇�ρ |2 + 2

∫
�ρ

∇⊥�ρ · ∇ H. (3.75)

We observe that the last term is in fact equal to zero since �ρ is constant on ∂�ρ .
Since |∇vε|2 ≥ |vε|2|∇wε|2 in �ρ , we derive that∫

�ρ

ρTF(x)|∇vε|2 ≥
∫

�ρ

1

ρTF(x)
|∇�ρ |2 + T1

with

T1 =
∫

�ρ

(|vε|2 − 1
) 1

ρTF(x)
|∇�ρ |2.

It turns out that T1 = oR(1) and therefore∫
�ρ

ρTF(x)|∇vε|2 ≥
∫

�ρ

1

ρTF(x)
|∇�ρ |2 + oR(1). (3.76)

On the other hand, integrating by parts we obtain

∫
�ρ

1

ρTF(x)
|∇�ρ |2 =

∫
∂�ρ

1

ρTF(x)

∂�ρ

∂ν
�ρ = −2π

nε∑
j=1

D j �ρ(z j )

for any point z j ∈ ∂ B(xε
j , ρ). Since nε and each D j remain uniformly bounded in ε

by Proposition 3.14, we may rewrite this equality as

∫
�ρ

1

ρTF(x)
|∇�ρ |2 = −2π

nε∑
j=1

D j �R,ε(z j ) + O(‖�R,ε − �ρ‖L∞(�ρ)). (3.77)

Using an adaptation of Lemma I.4 in [33], we derive that

‖�R,ε − �ρ‖L∞(�ρ) ≤
nε∑

j=1

(
sup

∂ B(xε
j ,ρ)

�R,ε − inf
∂ B(xε

j ,ρ)
�R,ε

)
. (3.78)

To estimate the right-hand-side term in (3.78), we introduce for x ∈ BR ,

�R,ε(x) = �R,ε(x) −
nε∑

j=1

D j ρTF(xε
j )log|x − xε

j |.

Since �R,ε solves (3.74), we deduce that �R,ε may be characterized as the solution
of equation (3.71). By elliptic regularity, we infer that ‖�R,ε‖W 2,p(BR) ≤ CR,p for
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any 1 ≤ p < 2 (here we have used that {xε
j }nε

j=1 ⊂ B √
ρ0
4

by Proposition 3.12). In

particular, �R,ε is uniformly bounded with respect to ε in C0,1/2(BR) and hence

sup
∂ B(xε

j ,ρ)

�R,ε − inf
∂ B(xε

j ,ρ)
�R,ε ≤ CR

√
ρ = oR(1).

Since |xε
j − xε

i | ≥ 8ρ, we derive from (3.52),

sup
∂ B(xε

j ,ρ)

( nε∑
i=1

Di ρTF(xε
i )log|x − xε

i |
)

− inf
∂ B(xε

j ,ρ)

( nε∑
i=1

Di ρTF(xε
i )log|x − xε

i |
)

≤ ρ

nε∑
i=1

ρTF(xε
i ) sup

∂ B(xε
j ,ρ)

|Di |
|x − xε

i | ≤ O(1)

(respectively ≤ o(1) if ρ
|xε

i −xε
j | → 0 as ε → 0 for any i �= j). Returning to (3.78),

we obtain that ‖�R,ε − �ρ‖L∞(�ρ) ≤ OR(1) (respectively ≤ oR(1) if ρ
|xε

i −xε
j | → 0

as ε → 0 for any i �= j). Inserting this estimate in (3.77), we get that

∫
�ρ

1

ρTF(x)
|∇�ρ |2 = − 2π

nε∑
j=1

D j �R,ε(z j ) + OR(1)

= − 2π

nε∑
j=1

D j �R,ε(z j ) − 2π
∑
i �= j

Di D j ρTF(xε
i )log|z j − xε

i |

+ 2π

nε∑
j=1

D2
j ρTF(xε

j )|log ρ| + OR(1) (3.79)

(respectively +oR(1) as ε → 0). Since �R,ε is uniformly bounded with respect to ε

in C0,1/2(BR), we have |�R,ε(z j ) − �R,ε(xε
j )| ≤ CR

√
ρ = oR(1). Moreover, using

(3.52) and |xε
j − xε

i | ≥ 8ρ, we derive that

∣∣∣∑
i �= j

Di D j ρTF(xε
i )(log|z j − xε

i | − log|xε
j − xε

i |)
∣∣∣

≤
∑
i �= j

|Di | |D j |log
∣∣1 +

z j − xε
j

xε
j − xε

i

∣∣ ≤
∑
i �= j

|Di | |D j | ρ

|xε
j − xε

i | ≤ O(1)

(respectively ≤ o(1) as ε → 0). Hence (3.79) yields

∫
�ρ

1

ρTF(x)
|∇�ρ |2 = − 2π

nε∑
j=1

D j �R,ε(xε
j ) − 2π

∑
i �= j

Di D j ρTF(xε
i )log|xε

j − xε
i |

+ 2π

nε∑
j=1

D2
j ρTF(xε

j )|log ρ| + OR(1)
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(respectively +oR(1) as ε → 0). By combining this estimate with (3.76), we obtain
the announced result. ��

After estimating the contribution in the energy of each vortex, we may easily
deduce the following lower bounds for Gε(vε):

Lemma 3.26. For any R ∈ [
√

ρ0/2,
√

ρ0 ), we have

Gε(vε, BR) ≥ π

nε∑
j=1

D2
j ρTF(xε

j )|log ρ| + π

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε
+ WR,ε + OR(1)

(3.80)

and also

Gε(vε, BR) ≥ π

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε
+ O(1). (3.81)

Let us point out that in the second estimate, the rest O(1) does not depend on R.

Proof: In view of Proposition 3.25 or the fact that Gε is positive outside the balls, it
is sufficient to show that

Gε(vε, B(xε
j , ρ)) ≥ π |D j | ρTF(xε

j )log
ρ

ε
+ O(1) for j = 1, . . . , nε,

which is equivalent to

1

2

∫
B(xε

j ,ρ)

|∇vε|2 +
ρTF(xε

j )

2ε2
(1 − |vε|2)2 ≥ π |D j | log

ρ

ε
+ O(1) for j = 1, . . . , nε

(3.82)

(we have used that |ρTF(x) − ρTF(xε
j )| ≤ Cρ for x ∈ B(xε

j , ρ) and Gε(vε, BR) ≤
C |logε|). Let

v̂(y) = vε(ρy + xε
j ) for y ∈ B(0, 1) and ε̂ = ε

ρ
√

ρTF(xε
j )

.

We deduce from Proposition 3.14 that |v̂| ≥ 1 − 2
|log ε| on ∂ B(0, 1),

∫
∂ B(0,1)

|∇v̂|2
2

+ 1

4ε̂2
(1 − |v̂|2)2 =

∫
∂ B(xε

j ,ρ)

|∇vε|2
2

+
ρTF(xε

j )

4ε2
(1 − |vε|2)2 ≤ C,

(3.83)

and

1

2

∫
B(0,1)

|∇v̂|2 + 1

2ε̂2
(1 − |v̂|2)2 = 1

2

∫
B(xε

j ,ρ)

|∇vε|2 +
ρTF(xε

j )

2ε2
(1 − |vε|2)2.
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Equation (3.83) yields, for ε small enough,

1

2

∫
B(0,1)

|∇v̂|2 + 1

2ε̂2
(1 − |v̂|2)2 ≥ π |D j | |logε̂| + O(1) = π |D j | log

ρ

ε
+ O(1),

and hence (3.82) holds. ��
As in Lemma 3.11, we may compute an asymptotic expansion of Lε(vε,Dε)

in terms of vortices, which leads, in view of Lemma 3.26, to lower bounds for
Eε(vε,Dε):

Proof of Proposition 3.23: Let us consider the family of balls given in Proposition
3.10. As in the proof of Proposition 3.14, we can find rε ∈ [R, (R + √

ρ0 )/2] such
that (3.69) holds. Setting

I +
R = {

i, |pi | > rε and di ≥ 0
}

and I −
R = {

i, |pi | > rε and di < 0
}
, (3.84)

we have Bi ⊂ Dε \ Brε for any i ∈ I +
R ∪ I −

R . By Propositions 3.10, 3.12, and 3.14,
we infer that for ε small enough,

|vε| ≥ 1

2
in �ε := Dε \

( ⋃
i∈I +

R ∪I −
R

Bi ∪
nε⋃

j=1

B(xε
j , ρ)

)
.

Arguing exactly as in the proof of Lemma 3.11, we obtain that

Lε(vε, �ε) = −π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j (3.85)

− π�

2

∑
i∈I +

R ∪I −
R

(
ρ2

TF(pi ) − ν2
ε |log ε|−3)di + oR(1).

Recall (3.43); hence Lε(vε, ∪i∈I +
R ∪I −

R
Bi ) = o(1). In the same way, we may prove

that Lε(vε, ∪nε

j=1 B(xε
j , ρ)) = o(1). From Proposition 3.10 and (3.85), we deduce

that

Eε(vε,Dε) ≥ Gε(vε,Dε \ ∪i∈I +
R ∪I −

R
Bi ) +

∑
i∈I +

R ∪I −
R

1

2

∫
Bi

ρTF(x)|∇vε|2

+ Lε(vε, �ε) + oR(1)

≥ Gε(vε, BR) − π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j

+ π
∑

i∈I +
R ∪I −

R

ρTF(pi )|di |
(|log ε| − K0log|log ε|)

− π�

2

∑
i∈I +

R ∪I −
R

(
ρ2

TF(pi ) − ν2
ε |log ε|−3)di + oR(1). (3.86)
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Since pi �∈ Brε for i ∈ I +
R ∪ I −

R , we have ρTF(pi ) � ρ0 and we infer that for ε small
enough,

π
∑

i∈I +
R ∪I −

R

ρTF(pi )|di |
(|log ε| − K0log|log ε|) − π�

2

∑
i∈I +

R ∪I −
R

(
ρ2

TF(pi ) − ν2
ε |log ε|−3)di

is nonnegative, which leads to

Eε(vε,Dε) ≥ Gε(vε, BR) − π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j + oR(1). (3.87)

Combining (3.80) and (3.87), we obtain (3.70). Similarly, the inequality (3.87) with
R = √

ρ0/2 and (3.81) yields (3.72). ��

3.6 Upper bound

We construct an upper bound with d vortices such that their rescaled position by
1/

√
� minimizes the renormalized energy w introduced in (3.5). The main ingredi-

ents are taken from André and Shafrir [22] and have been applied to this problem by
Ignat–Millot [81]. Given the splitting of the energy, to get an upper bound, we only
need to get an upper bound for Gε(v).

Beforehand, we should recall a result in [33]: for ε̃ > 0, consider

I (ε̃) = min
u∈C

1

2

∫
B(0,1)

|∇u|2 + 1

2ε̃2
(1 − |u|2)2,

where

C =
{

u ∈ H1(B(0, 1), C), u(x) = x

|x | on ∂ B(0, 1)

}
.

Then we have

lim
ε̃→0

(
I (ε̃) + π log ε̃

) = γ0. (3.88)

The expected test function v is going to be of modulus 1 except close to the vortex
balls, where it will locally minimize I .

Proposition 3.27. Let d ≥ 1 be an integer. For any δ > 0, there exists v̂ε such that

lim sup
ε→0

{
Gε(v̂ε) + π

2
ρ0d(ρ0ω1 − d + 1)log|log ε|

}
≤ min

b∈R2d
w(b) + Qd + δ,

where w is defined by (3.5),

Qd = πρ0

2
(d2 − d)log2 + πρ0dlogρ0 + ρ0dγ0 − π

2
ρ0d2, (3.89)

and γ0 is given by (3.88).
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Proof: Step 1. Let σ > 0 and κ > 0 be two small parameters that we will choose
later. We consider the function ρσ : D → R given by

ρσ (x) =
{

ρTF(x) if |x | ≤ √
ρ0 − σ ,

−2
√

ρ0 − σ |x | + 2ρ0 − σ otherwise.

It turns out that ρσ ∈ C1(D), ρσ ≥ ρTF, and ρσ ≥ Cσ 2 in D for some positive
constant C . Since ρσ does not vanish in D, we may define �σ : D → R as the
solution of the equation{

div ( 1
ρσ

∇�σ ) = 2πd δ0 in D,

�σ = 0 on ∂D.
(3.90)

By the results in Chapter I of [33], there is a map vσ
0 ∈ C2(D \ {0}, S1) satisfying

vσ
0 ∧ ∇vσ

0 = 1

ρσ

∇⊥�σ in D \ {0}. (3.91)

Let �κ,ε = D \ B(0, κ−1�−1/2). By (3.90) and (3.91), for ε small enough, we have∫
�κ,ε

ρσ |∇vσ
0 |2 =

∫
�κ,ε

1

ρσ

|∇�σ |2 = −
∫

∂ B(0,κ−1�−1/2)

1

ρTF

∂�σ

∂ν
�σ

= −
∫

∂ B(0,κ−1�−1/2)

ρ2
0 d2

ρTF

(
∂�σ

∂ν
+ 1

|x |
) (

�σ + log|x |), (3.92)

where �σ (x) = (ρ0d)−1�σ (x) − log|x |. Notice that �σ ∈ C1,α(D) for any 0 <

α < 1, since it satisfies the equation{
div

( 1
ρσ

∇�σ

) = fσ (x) in D,

�σ = −log|x | on ∂D
(3.93)

with

fσ (x) = − ∇( 1

ρσ (x)

) · x

|x |2 =

⎧⎪⎨
⎪⎩

−2
ρ2

σ (x)
if |x | ≤ √

ρ0 − σ ,

−2
√

ρ0−σ

ρ2
σ (x)|x | otherwise.

Since all functions are radial, �σ can be computed explicitly:

�σ (x) = −
∫ √

ρ0

|x |
ρTF(t)

t

(∫ t

0
f (s)s ds

)
dt − 1

2
logρ0.

In particular, we find that for |x | <
√

ρ0 − σ ,

�σ (x) = 1

2ρ0
(ρ0 − |x |2) − 1

2
logρ0 + O(σ )).
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It follows that as σ tends to 0, �σ (0) tends to � := 1
2 − 1

2 logρ0. From (3.92), we
derive that

lim sup
ε→0

{
1

2

∫
�κ,ε

ρTF|∇vσ
0 |2 − πρ0d2log(κ�1/2)

}

≤ lim
ε→0

{
1

2

∫
�κ,ε

ρσ |∇vσ
0 |2 − πρ0d2log(κ�1/2)

}
≤ −πρ0d2�σ (0).

Consequently, we may choose σ small such that

lim sup
ε→0

{
1

2

∫
�κ,ε

ρTF|∇vσ
0 |2 − πρ0d2log(κ�1/2)

}
≤ −πρ0d2� + δ

2
. (3.94)

Step 2. We are going to extend vσ
0 to B(0, κ−1�−1/2). As in [33], we may write in a

neighborhood of 0 (using polar coordinates)

vσ
0 (x) = exp

(
i(dθ + ψσ (x))

)
,

where ψσ is a smooth function in that neighborhood. Let (b1, . . . , bd) ∈ R2d be a
minimizing configuration for w(·), i.e.,

w(b1, . . . , bd) = min
b∈R2d

w(b) (3.95)

(note that we necessarily have bi �= b j for i �= j). We choose κ sufficiently small

such that max |b j | ≤ 1/(4κ) and we let b(ε)
j = �−1/2 b j . Following the proof of

Lemma 2.6 in [22], for x ∈ Aκ,ε = B(0, κ−1�−1/2) \ B(0, (2κ)−1�−1/2), we write

eiψσ (0)
d∏

j=1

x − b(ε)
j

|x − b(ε)
j |

= exp
(
i(dθ + φε(x))

)
,

where φε is a smooth function satisfying |∇φε(x)| ≤ Cσ κ2�1/2 and |φε(x) −
ψσ (0)| = Cσ κ2 for x ∈ Aκ,ε. We define in Aκ,ε,

v̂ε(x) = exp
(
i(dθ + ψ̂ε(x))

)
with

ψ̂ε(x) = (
2 − 2κ�1/2|x |)φε(x) + (

2κ�1/2|x | − 1
)
ψσ (x).

As in [22], we get, using (3.21),

lim sup
ε→0

{
Gε(v̂ε, Aκ,ε) − πρ0d2log2

}

≤ lim sup
ε→0

{
1

2

∫
Aκ,ε

ρσ |∇v̂ε|2 − πρ0d2log2

}
≤ Cσ κ2. (3.96)
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Next we define v̂ε in �κ,ε = B(0, (2κ)−1�−1/2) \ ∪d
j=1 B(b(ε)

j , 2κ�−1/2) by

v̂ε(x) = eiψσ (0)
d∏

j=1

x − b(ε)
j

|x − b(ε)
j |

.

Once more as in [22], we have, using (3.21),

lim sup
ε→0

Gε(v̂ε, �κ,ε) ≤ lim sup
ε→0

1

2

∫
�κ,ε

ρσ |∇v̂ε|2

≤ πρ0(d
2 + d)log

1

2κ
− πρ0

∑
i �= j

log|bi − b j | + Cσ κ.

(3.97)

Finally, in each B(ε)
j := B(b(ε)

j , 2κ�−1/2), we let

v̂ε(x) = eiψσ (0)w̃ j
ε

(
x − b(ε)

j

2κ�−1/2

)
, (3.98)

where w̃
j
ε achieves the minimum of

1

2

∫
B(0,1)

|∇v|2 + 1

2ε̂2
(1 − |v|2)2 , s.t. v(y) =

d∏
i=1

2κy + b j − bi

|2κy + b j − bi | on ∂ B(0, 1)

(3.99)

with
ε̂ = ε

2κ
√

ρ0 �−1/2
.

As in the proof of Lemma 2.3 in [22], we derive

lim
ε→0

{
1

2

∫
B(0,1)

|∇w̃ j
ε |2 + 1

2ε̂2
(1 − |w̃ j

ε |2)2 − π |logε̂|
}

= γ0 + X (κ),

where γ0 is defined in (3.88) and X (κ) denotes a quantity satisfying X (κ) → 0 as
κ → 0. By scaling, we obtain

lim
ε→0

{
1

2

∫
B(ε)

j

|∇v̂ε|2 + ρ0

2ε2
(1 − |v̂ε|2)2 − π log

2κ�−1/2

ε

}
= π

2
log ρ0 + γ0 + X (κ).

Notice that in B(ε)
j ,

ρσ (x) = ρTF(x) ≤ ρ0 − (|log ε| + ω1log|log ε|)−1 min
y∈B(b j ,2κ)

ρ0|y|2
2

,

and consequently,
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lim sup
ε→0

{
1

2

∫
B(ε)

j

ρσ |∇v̂ε|2 + ρ0ρσ

2ε2
(1 − |v̂ε|2)2 − πρ0log

2κ�−1/2

ε

}

≤ πρ0

2
log ρ0 + ρ0γ0 − πρ0|b j |2

2
+ X (κ).

This inequality and (3.21) yield

lim sup
ε→0

{
Gε(v̂ε, B(ε)

j ) − πρ0log
2κ�−1/2

ε

}

≤ πρ0

2
log ρ0 + ρ0γ0 − πρ0|b j |2

2
+ X (κ). (3.100)

Combining (3.94), (3.96), (3.97), and (3.100), we conclude that for κ small enough,

lim sup
ε→0

{
Gε(v̂ε) − πρ0d|log ε| − πρ0

2
(d2 − d)log|log ε|

}

≤ −πρ0

∑
i �= j

log|bi − b j | − πρ0

2

d∑
j=1

|b j |2 + Qd + δ. (3.101)

Step 3. Now it remains to estimate Lε(v̂ε). By the results in Chapter IX in [33], for ε̂

sufficiently small and each j = 1, . . . , d, there exists exactly one disc D̂ j
ε ⊂ B(0, 1)

with diam(D̂ j
ε ) ≤ C ε̂ such that |w̃ j

ε | ≥ 1/2 in B(0, 1)\ D̂ j
ε . By scaling, we infer that

there exist exactly d discs D1
ε , . . . , Dd

ε with D j
ε ⊂ B(ε)

j and diam(D j
ε ) ≤ Cε such

that

|v̂ε| ≥ 1

2
in Dε \ ∪d

j=1 D j
ε .

We derive from (3.100) that

∣∣Lε(v̂ε, ∪d
j=1 D j

ε )
∣∣ ≤ C� ε

d∑
j=1

(
Gε(v̂ε, B(ε)

j )
)1/2 −→

ε→0
0.

From (3.21), we infer that

lim
ε→0

∣∣Lε(v̂ε,Dε \ ∪d
j=1 D j

ε ) − Lε(v̂ε,Dε \ ∪d
j=1 D j

ε )
∣∣ = 0

and hence

lim
ε→0

∣∣Lε(v̂ε) − Lε(v̂ε,Dε \ ∪d
j=1 D j

ε )
∣∣ = 0. (3.102)

To compute Lε(v̂ε,D \ ∪d
j=1 D j

ε ), we proceed as in the proof of Lemma 3.11 (here
we use that Gε(v̂ε) ≤ C |log ε| by (3.101)). This yields

lim
ε→0

(
Lε(v̂ε,Dε \ ∪d

j=1 D j
ε ) + π�

2

d∑
j=1

ρ2
TF(b(ε)

j )

)
= 0,
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since deg(v̂ε/|v̂ε|, ∂ D j
ε ) = +1 for j = 1, . . . , d. Expanding ρ2

TF(b(ε)
j ) and �, and

setting b j = b(ε)
j �1/2, we deduce from (3.102) that

lim
ε→0

(
Lε(v̂ε) + πρ0d |log ε| + π

2
ρ2

0ω1dlog|log ε|
)

= πρ0

d∑
j=1

|b j |2. (3.103)

Combining (3.95), (3.101), and (3.103), we obtain the announced result. ��

3.7 Final expansion and properties of vortices

We prove that vortices are of degree one and located close to the point of the maxi-
mum of ρTF.

3.7.1 Vortices have degree one

Lemma 3.28. If ε is small enough, D j = +1 for j = 1, . . . , nε.

Proof. Recall that Eε(vε,Dε) ≤ o(1). This and (3.72) imply that

π

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε
− πρ0�

2

∑
D j >0

ρTF(xε
j ) D j ≤ O(1).

Since � = 2/ρ0|log ε| + o(|log ε|), we derive that

nε∑
j=1

|D j | ρTF(xε
j )log

ρ

ε
≤

∑
D j >0

D j ρTF(xε
j )|log ε| + o(|log ε|).

Given that ρ ≥ εµ and D j �= 0, it follows that

(1 − µ)
∑

D j <0

|D j | ρTF(xε
j )|log ε| ≤ µ

∑
D j >0

|D j | ρTF(xε
j )|log ε| + o(|log ε|).

By Proposition 3.12, ρTF(xε
j ) ≥ ρ0/2, and consequently,

∑
D j <0

|D j | ≤ 2µ

1 − µ

∑
D j >0

|D j | + o(1) ≤ Cµ

1 − µ
+ o(1).

Choosing µ sufficiently small implies that D j > 0 for j = 1, . . . , nε whenever ε is
small enough. Since |xε

j | ≤ C and D j > 0, we may now assert that

−π
∑
i �= j

Di D j ρTF(xε
j )log|xε

i − xε
j | ≥ −C,
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and thus W √
ρ0
2

≥ −π
∑nε

j=1 D j�
√

ρ0
2 ,ε

(xε
j ) − C is bounded below. Hence the in-

equality (3.70), applied with R = √
ρ0/2, together with Eε(vε,Dε) ≤ o(1) leads us

to

π

nε∑
j=1

D2
j ρTF(xε

j )|log ρ| + π

nε∑
j=1

D j ρTF(xε
j )log

ρ

ε
− π�

2

nε∑
j=1

ρ2
TF(xε

j ) D j ≤ O(1).

As previously, we derive from the expression of �,

nε∑
j=1

(D2
j − D j ) ρTF(xε

j )|log ρ| ≤ o(|log ε|).

Since ρ ≤ εµ and ρTF(xε
j ) ≥ ρ0/2, we conclude that

µ ρ0

2

nε∑
j=1

(D2
j − D j ) ≤ o(1),

which yields D j = +1 whenever ε is small enough. ��
A direct consequence of Lemma 3.28 is the following improvement of Proposi-

tion 3.23:

Corollary 3.29. For any R ∈ [
√

ρ0/2,
√

ρ0 ), we have

Eηε (vε) ≥ π

nε∑
j=1

ρTF(xε
j )|log ε| − π�

2

nε∑
j=1

ρ2
TF(xε

j ) + WR,ε

(
(xε

i , +1)
) + OR(1).

Proof: The result follows directly from (3.70) and Lemma 3.28 that for any R ∈
[
√

ρ0/2,
√

ρ0 ),

Eε(vε,Dε) ≥ π

nε∑
j=1

ρTF(xε
j )|log ε| − π�

2

nε∑
j=1

ρ2
TF(xε

j ) + WR,ε

(
(xε

i , +1)
) + OR(1).

On the other hand, we have proved in (3.33) that |Eε(vε,Dε) − Eηε (vε,Dε)| = o(1).
Hence we have Ẽηε (vε) ≥ Eε(vε,Dε) + o(1), and the conclusion follows. ��

3.7.2 The subcritical case

We are now able to prove the rest of Theorem 3.1. It remains to prove the following
proposition.

Proposition 3.30. Assume that ω1 < 0. Then for ε sufficiently small, we have that

|vε| → 1 in L∞
loc(D) as ε → 0. (3.104)

Moreover,

Eε(vε) = o(1) and Gε(vε) = o(1). (3.105)
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Proof. We fix some
√

ρ0
2 < R0 <

√
ρ0 . We have proved in (3.34) that Eηε (vε) ≤ o(1),

so that Corollary 3.29 with R =
√

ρ0
2 leads to

π

nε∑
j=1

ρTF(xε
j )|log ε| − πρ0�

2

nε∑
j=1

ρTF(xε
j ) ≤ C.

Since ρTF(xε
j ) ≥ ρ0/2 and ω1 < 0, we deduce that ρ0|ω1| nεlog|log ε| is bounded

and thus nε ≤ o(1), which implies that nε ≡ 0 whenever ε is small enough. Using
the notation (3.84), we derive from (3.86) that

Eε(vε,Dε) ≥ π
∑

i∈I +
R0

∪I −
R0

ρTF(pi )|di |
(|log ε| − K0log|log ε|)

− π�

2

∑
i∈I +

R0
∪I −

R0

(
ρ2

TF(pi ) − ν2
ε |log ε|−3)di

By (3.34), we have Eε(vε,Dε) ≤ O(|log ε|−1). Since ρTF(pi ) � ρ0 for i ∈ I +
R0

∪
I −

R0
, we infer that there exists c > 0 independent of ε such that

c
∑

i∈I +
R0

∪I −
R0

ρTF(pi )|di ||log ε| ≤ π
∑

i∈I +
R0

∪I −
R0

ρTF(pi )|di |
(|log ε| − K0log|log ε|)

− π�

2

∑
i∈I +

R0
∪I −

R0

(
ρ2

TF(pi ) − ν2
ε |log ε|−3)di

≤ O(|log ε|−1).

Since ρTF(x) ≥ |log ε|−3/2 in Dε, we finally obtain∑
i∈I +

R0
∪I −

R0

|di | ≤ O(|log ε|−1/2).

Hence
∑

i∈I +
R0

∪I −
R0

|di | = 0 for ε sufficiently small and we conclude from (3.85) that

Lε(vε,Dε \ ∪i∈I +
R0

∪I −
R0

Bi ) = o(1).

By [80], we have Lε(vε, ∪i∈I +
R0

∪I −
R0

Bi ) = o(1), so that Lε(vε,Dε) = o(1). Conse-

quently,
Gε(vε,Dε) = Eε(vε,Dε) + o(1) ≤ o(1).

Then the rest of the proof follows as in [80]. ��

3.7.3 The supercritical case

In this section, we will prove Theorem 3.2. We assume that

2(d − 1) < ω1ρ0 < 2d (3.106)

for some integer d ≥ 1. We start by proving that in this regime, vε has vortices:
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Proposition 3.31. Assume that (3.106) holds. Then for ε sufficiently small, vε has
exactly d vortices of degree one, i.e., nε ≡ d, and

Eηε (vε) = −π

2
ρ2

0 d ω1log|log ε| + πρ0

2
(d2 − d)log|log ε| + O(1). (3.107)

Proof. Step 1. We start by proving that nε ≥ 1 for ε sufficiently small. By the upper
bound of Proposition 3.27 (with d = 1), there exists v̂ε such that

Eηε (vε) ≤ Eηε (v̂ε) ≤ −π

2
ρ2

0ω1log|log ε| + O(1).

From here, it turns out by Corollary 3.29 with R =
√

ρ0
2 (recall that W √

ρ0
2

≥ O(1)),

that

− π

2
ρ2

0ω1log|log ε| + O(1) ≥ Eηε (vε) ≥ π

nε∑
j=1

ρTF(xε
j )|log ε| − π�

2

nε∑
j=1

ρ2
TF(xε

j )

≥ π

nε∑
j=1

ρTF(xε
j )

(
−ρ0

2
ω1log|log ε| +

�|xε
j |2

2

)

≥ −π

2
ρ2

0ω1nεlog|log ε|.

Hence nε ≥ 1 + o(1) and the conclusion follows.

Step 2. Now we show that

Eηε (vε) ≥ −π

2
ρ2

0 nεω1log|log ε| + πρ0

2
(n2

ε − nε)log|log ε| + O(1). (3.108)

In the case nε = 1, we have already proved the result in the previous step. Then we
may assume that nε ≥ 2. Since

∥∥�√
ρ0
2 ,ε

∥∥∞ = O(1), we get from Corollary 3.29

with R =
√

ρ0
2 ,

Eηε (vε) ≥ π

nε∑
j=1

ρTF(xε
j )

(
|log ε| −

nε∑
i=1
i �= j

log|xε
i − xε

j | −
�ρTF(xε

j )

2

)
+ O(1)

≥ π

nε∑
j=1

ρTF(xε
j )

(
− ρ0

2
ω1log|log ε| −

nε∑
i=1
i �= j

log|xε
i − xε

j | +
�|xε

j |2
2

)
+ O(1).

(3.109)

Since Eηε (vε) ≤ o(1), we derive that

−
∑
i �= j

log|xε
i − xε

j | + �

2

nε∑
j=1

|xε
j |2 ≤ C log|log ε|.
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On the other hand, − ∑
i �= j log|xε

i − xε
j | ≥ O(1), so that

|xε
j |2 ≤ C

log|log ε|
|log ε|

and hence

π

nε∑
j=1

ρTF(xε
j )

(
− ρ0

2
ω1log|log ε| −

nε∑
i=1
i �= j

log|xε
i − xε

j | +
�|xε

j |2
2

)
(3.110)

= −π

2
ρ2

0 nεω1log|log ε| − πρ0

∑
i �= j

log|xε
i − xε

j | + πρ0�

2

nε∑
j=1

|xε
j |2 + o(1).

Let r = max j |xε
j |. We remark that

−
∑
i �= j

log|xε
i − xε

j | + �

2

nε∑
j=1

|xε
j |2 ≥ −(n2

ε − nε)log2r + �r2

2

≥ n2
ε − nε

2
log|log ε| + O(1). (3.111)

Combining (3.109), (3.110), and (3.111), we obtain (3.108).

Step 3. We are going to prove that nε ≥ d. By Step 1, we may assume that d ≥ 2.
We use Proposition 3.27 to deduce that

Eε(vε) ≤ −π

2
ρ2

0 dω1log|log ε| + πρ0

2
(d2 − d)log|log ε| + O(1). (3.112)

Matching (3.108) with (3.112), we deduce that

−ρ0

2
ω1nε + n2

ε − nε

2
≤ −ρ0

2
ω1d + d2 − d

2
+ o(1),

which yields

ρ0

2
ω1(d − nε) ≤ (d − nε)(d + nε − 1)

2
+ o(1). (3.113)

If we had nε ≤ d − 1, it would lead to

(d − 1) + δ ≤ d + nε − 1

2
+ o(1) ≤ d − 1 + o(1),

which is impossible for ε small enough.
Assume now that nε ≥ d + 1. As previously, we infer that (3.113) holds and

therefore

d − δ ≥ d + nε − 1

2
+ o(1) ≥ d + o(1),

which is also impossible for ε small. Hence nε ≡ d whenever ε is small enough,
which leads to (3.107) by (3.108) and (3.112). ��

By Proposition 3.31, we may now assume that vε has exactly d vortices. The
next lemma provides information on their location:
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Lemma 3.32. We have

|xε
j | ≤ C |log ε|−1/2, |xε

i − xε
j | ≥ C |log ε|−1/2 for i �= j .

Proof: Matching (3.107) with (3.109) and (3.110), we deduce that

−πρ0

∑
i �= j

log|xε
i − xε

j | + πρ0�

2

d∑
j=1

|xε
j |2 ≤ πρ0(d

2 − d)log
(|log ε|1/2) + O(1).

Hence
d∑

j=1

(
−

∑
i �= j

log
(√

|log ε| |xε
i − xε

j |
)

+
�|xε

j |2
2

)
≤ O(1),

and the conclusion follows. ��
Since ρ

|xε
i −xε

j | = o(1) by Lemma 3.32, we may now improve the lower estimates

obtained in Lemma 3.26 following the method in [143], proof of Proposition 5.2.

Lemma 3.33. For any R ∈ [
√

ρ0/2,
√

ρ0 ), we have

Gε(vε, BR) ≥ πρ0

d∑
j=1

ρTF(xε
j )|log ε| + WR,ε(xε

1, . . . , xε
d)

+ πρ0d

2
log ρ0 + ρ0dγ0 + oR(1),

where γ0 is given by (3.88).

Proof: Since ρ
|xε

i −xε
j | = o(1) and D j = 1, Proposition 3.25 yields

1

2

∫
�ρ

ρTF(x)|∇vε|2 ≥ π

d∑
j=1

ρTF(xε
j )|log ρ| + WR,ε(xε

1, . . . , xε
d) + oR(1),

(3.114)

and it remains to estimate Gε(vε, B(xε
j , ρ)) for j = 1, . . . , d. Since D j = 1, we

may write on ∂ B(xε
j , ρ) in polar coordinates with center xε

j ,

vε(x) = |vε|(x) ei(θ+ψ j (θ)), θ ∈ [0, 2π ],

where ψ j ∈ H1([0, 2π ], R) and ψ j (0) = ψ j (2π) = 0. Then in each disc B(xε
j , 2ρ),

we consider the map v̂ε defined by

{
vε(x) if x ∈ B(xε

j , ρ),( r−ρ
ρ

+ 2ρ−r
ρ

|vε|(xε
j + ρ eiθ )

)
exp i

(
θ + ψ j (θ)

2ρ−r
ρ

+ ψ j (0)
ρ−r
ρ

)
if not.
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Then v̂ε = exp i(θ + ψ j (0)) on ∂ B(xε
j , 2ρ). Exactly as in the proof of Proposition

5.2 in [143], we prove that∣∣Gε(v̂ε, B(xε
j , 2ρ) \ B(xε

j , ρ)) − πρTF(xε
j )log2

∣∣ = o(1). (3.115)

Since |ρTF(x) − ρTF(xε
j )| = O(ρ) on B(xε

j , 2ρ), we may write

Gε(v̂ε, B(xε
j , 2ρ)) =

ρTF(xε
j )

2

∫
B(xε

j ,2ρ)

|∇v̂ε|2 +
ρTF(xε

j )

2ε2
(1 − |v̂ε|2)2 + o(1).

(3.116)

Since v̂ε(x) = x−xε
j

|x−xε
j | eiψ j (0) on ∂ B(xε

j , 2ρ), we obtain by scaling

1

2

∫
B(xε

j ,2ρ)

|∇v̂ε|2 +
ρTF(xε

j )

2ε2
(1 − |v̂ε|2)2 ≥ I

⎛
⎝ ε

2ρ
√

ρTF(xε
j )

⎞
⎠

= π log
ρ

ε
+ π log2 + π

2
logρTF(xε

j ) + γ0 + o(1).

With (3.115) and (3.116), we derive that for j = 1, . . . , d,

Gε(vε, B(xε
j , ρ)) ≥ πρTF(xε

j )log
ρ

ε
+

πρTF(xε
j )

2
logρTF(xε

j ) + ρTF(xε
j )γ0 + o(1)

≥ πρTF(xε
j )log

ρ

ε
+ πρ0

2
log ρ0 + ρ0γ0 + o(1).

Combining this estimate with (3.114), we get the result. ��
We are now able to give the asymptotic expansion of Eε(vε), which will allow

us to locate precisely the vortices. This concludes the proof of Theorem 3.2.

Proposition 3.34. Let x̃ε
j = √

� xε
j for j = 1, . . . , d. As ε → 0, the configuration

x̃ε
j tends to minimize the renormalized energy w : R2d → R given by

w(b1, . . . , bd) = −πρ0

∑
i �= j

log|bi − b j | + πρ0

2

d∑
j=1

|b j |2.

Moreover, we have

Eηε (vε) = −πρ2
0

2
d ω1log|log ε| + πρ0

2
(d2 − d)log|log ε| + min

b∈R2d
w(b) + Qd + o(1),

(3.117)

where Qd is given by (3.89).

Proof: From Lemma 3.33 and (3.87), we infer that for any R ∈ [
√

ρ0/2,
√

ρ0 ),
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Eε(vε,Dε) ≥ π

d∑
j=1

ρTF(xε
j )|log ε| − π�

2

d∑
j=1

ρ2
TF(xε

j )

+ WR,ε + πρ0d

2
log ρ0 + ρ0dγ0 + oR(1).

As in the proof of Corollary 3.29, this estimate also holds if Eε(vε,Dε) is replaced
by Eηε (vε). Expanding � and ρTF(xε

j ), we derive that

Eηε (vε) ≥ π

d∑
j=1

ρTF(xε
j )

(
− ρ0

2
ω1log|log ε| +

�|xε
j |2

2

)

+ WR,ε + πρ0d

2
log ρ0 + ρ0dγ0 + oR(1),

and Lemma 3.32 yields

Eηε (vε) ≥ − πρ2
0

2
d ω1log|log ε| + πρ0

2

d∑
j=1

�|xε
j |2 + WR,ε

+ πρ0d

2
log ρ0 + ρ0dγ0 + oR(1). (3.118)

By Lemma 3.32, we also have

WR,ε = −πρ0

∑
i �= j

log|xε
i − xε

j | − π

d∑
j=1

�R,ε(xε
j ) + o(1). (3.119)

Since D j = 1 for all j , the function �R,ε satisfies the equation{
div

(
1

ρTF
∇�R,ε

)
= − ∑d

j=1 ρTF(xε
j ) ∇

(
1

ρTF

)
· ∇

(
log|x − xε

j |
)

in BR ,

�R,ε = − ∑d
j=1 ρTF(xε

j )log|x − xε
j | on ∂ BR .

(3.120)

We infer from Lemma 3.32 that for j = 1, . . . , d,

ρTF(xε
j ) ∇

(
1

ρTF

)
· ∇

(
log|x − xε

j |
)

= −2ρ0

ρ2
TF(x)

+ f j
ε (x),

where f j
ε satisfies ‖ f j

ε ‖L p(BR) = oR(1) for any p ∈ [1, 2) and
∥∥ρ0log|x | −

ρTF(xε
j )log|x − xε

j |
∥∥

C1(∂ BR)
= o(1). Let �R be the solution of⎧⎨

⎩div
(

1
ρTF

∇�R

)
= −2

ρ2
TF(x)

in BR ,

�R = −log|x | on ∂ BR ,
(3.121)

it follows from classical results that ‖�R,ε − ρ0d�R‖L∞(BR) = oR(1). Hence we
obtain from (3.119),
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lim
ε→0

{
WR,ε(xε

1, . . . , xε
d) + πρ0

∑
i �= j

log|xε
i − xε

j |
} = −πρ0d2�R(0). (3.122)

Equation (3.121) can be solved explicitly since it is a radial function, and one finds
that �R converges to

�(x) = 1

2ρ0
(ρ0 − |x |2) − 1

2
logρ0.

It follows that as R tends to
√

ρ0, �R(0) tends to � := 1
2 − 1

2 logρ0.

Combining (3.118) and (3.122), we are led to

lim inf
ε→0

{
Eηε (vε) + πρ2

0

2
d ω1log|log ε| + πρ0

∑
i �= j

log|xε
i − xε

j | − πρ0

2

d∑
j=1

�|xε
j |2

}

≥ πρ0d

2
log ρ0 + ρ0dγ0 − πρ0d2�R(0).

Let x̃ε
j = √

� xε
j . Then

lim inf
ε→0

{
Eηε (vε) + πρ2

0

2
d ω1log|log ε| − πρ0

2
(d2 − d)log|log ε| − w(x̃ε

1, . . . , x̃ε
d)

}

≥ πρ0

2
(d2 − d)log(2) + πρ0dlog ρ0 − πρ0d2

2
log ρ0 + ρ0dγ0 − πρ0d2�R(0).

Since �R(0) → � as R → √
ρ0, we conclude that the right-hand side tends to Qd ,

lim inf
ε→0

{
Eηε (vε) + πρ2

0

2
ω1dlog|log ε| − πρ0

2
(d2 − d)log|log ε| − w(x̃ε

1, . . . , x̃ε
d)

}
≥ Qd , (3.123)

and hence

lim inf
ε→0

{
Eηε (vε) + πρ2

0

2
ω1dlog|log ε| − πρ0

2
(d2 − d)log|log ε|

}
≥ min

b∈R2d
w(b) + Qd . (3.124)

By the upper bound of Proposition 3.27, for any δ′ > 0, there exists v̂ε ∈ H such
that E(vε) ≤ E(v̂ε); hence

lim sup
ε→0

{
Eηε (vε) + π

2
ρ2

0 d ω1log|log ε| − πρ0

2
(d2 − d)log|log ε|

}
≤ min

b∈R2d
w(b) + Qd + δ′. (3.125)

Matching (3.124) with (3.125), we conclude that
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lim
ε→0

{
Eηε (vε) + π

2
ρ2

0 d ω1log|log ε| − πρ0

2
(d2 − d)log|log ε|

}
= min

b∈R2d
w(b) + Qd

since δ′ is arbitrarily small. Returning to (3.123), we are led to

min w(b) + Qd − lim sup
ε→0

w(xε
1, . . . , xε

d) ≥ Qd

and therefore limε→0 w(x̃ε
1, . . . , x̃ε

d) = min
b∈R2d

w(b), which ends the proof. ��

3.8 Open Questions

3.8.1 Vortices in the region of low density

As we mentioned in the introduction, the techniques introduced in this chapter do
not allow us to investigate the existence of vortices in the region of low density. For
� sufficiently below the critical velocity, we believe that there are no vortices at all,
as stated in Open Problem 3.1.

Open Problem 3.2 For � such that limε→0 �/|log ε| > ω∗
0 , are all the vortices

close to the origin or are there some located in D \ Dε?

When the minimization is set in R2 instead of D, the results of this chapter have
been proved in [80, 81]. The same open problems as 3.1 and 3.2 can be stated. An
intermediate result would be to prove that the vortices lie in a bounded domain.

3.8.2 Other trapping potentials

Open Problem 3.3 Address the minimization of (3.1) when ρTF(r) is still a radial
function such that the domain D = {ρTF > 0} is a disc.

Let us call ξ(r) the primitive that vanishes on ∂D of −rρTF(r). If ρTF(r) is decreasing
and the maximum of ξ(r)/ρTF(r) is achieved at the origin, then a similar proof to
the one presented in this chapter should hold and vortices should appear close to the
origin.

On the other hand, if the maximum of ξ(r)/ρTF(r) is achieved for r = r0 > 0,
then vortices should appear on the circle of radius r0, as illustrated in Figure 1.6. The
critical velocity for the existence of n vortices should be of order ω∗

0 |log ε| + ωn ,
where ωn is of order 1, instead of order log|log ε|. The main difficulty in the proof
relies on the estimate (3.50), which is not easy to get when the vortex balls do not
approach a single point but a curve. Once this is proved, the machinery of Section
3.4 can be used to derive the refined structure of vortices. A totally new feature is that
when there are n vortices in the system, they are no longer at distance 1/

√|log ε|, but
at distance of order 1. The logarithm involved in the renormalized energy w should
be replaced by something else. Some similar features will be addressed in the next
chapter for the quartic potential.
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3.8.3 Intermediate �

Open Problem 3.4 Let ω0 = limε→0 �/|log ε|. Let uε be a minimizer of Eε, and
ηε be as defined in Proposition 3.3. Then

lim
ε→0

Eε(uε) − Eε(ηε)

�2
= min J − 1

2

∫
D

r2ρTF, (3.126)

where

J (w) = 1

2ω0

∫
D

ρTF

∣∣∣∣div

(
1

ρTF
∇w

)
+ 2

∣∣∣∣ + 1

2

∫
D

1

ρTF
|∇w|2 (3.127)

is defined for w ∈ H1
0 (D) such that∫

D

1

ρTF
|∇w|2 < ∞ and div

(
1

ρTF
∇w

)
+ 2 is a Radon measure in D.

The proof requires the use of vε = uε/ηε and the energy splitting (3.10), but we
write the two terms including the gradient as a perfect square, which yields

Eε(uε) − Eε(ηε) =
∫
D

η2
ε

2
|∇vε − i� × rvε|2 − η2

ε

2
�2r2|vε|2 + η4

ε

4ε2
(|v|2 − 1)2.

(3.128)

Minimizing this on vε allows us to get two equations, on the modulus and phase of
vε, the second one being

div (η2
ε(ivε, ∇vε) − �η2

εr⊥) = 0. (3.129)

This implies that there exists wε satisfying

∇⊥wε = η2
ε(ivε, ∇vε) − �η2

εr⊥. (3.130)

One should prove that wε/� converges weakly in H1
0 to w∗, the unique minimizer

of J that is a solution of the following free boundary problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(div (1/(ρTF)∇w∗) + 2) (w∗ − ρTF/(2ω0)) = 0 in D,

w∗ = 0 on ∂D,

w∗ ≤ ρTF/(2ω0) in D,

div (1/(ρTF)∇w∗) + 2 ≥ 0 in D.

The measure µ∗ = div (1/(ρTF)∇w∗) + 2 is the vortex density. It is supported in
D∗ = {x ∈ D, w∗ = ρTF/(2ω0)}. This domain is nonempty, that is, vortices start to
exist as soon as ω0 ≥ ω∗

0 = 2/ρ0. This critical value is consistent with the one found
in Theorem 3.1. The region D∗ corresponds to the region where there is a uniform
distribution of vortices (it is an inner disc), while in the exterior of D∗, defined by
{ρTF ≤ 2/ω0}, there are no vortices. Due to the special shape of ρTF, it turns out that
the solution of div (1/(ρTF)∇w∗) = −2 in D with 0 boundary condition is ρ2

TF/4.
We also expect the vortex density µε = (2π/�)

∑
i diδpi , where pi are the centers

of the vortex balls, to converge to µ∗.
More detailed results in the spirit of [135] are certainly possible.
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3.8.4 Time-dependent problem

Open Problem 3.5 Consider an initial vortex-free solution of the time-dependent
problem with Schrödinger dynamics and analyze the evolution equation for fixed
positive �. The final state should be close to a one-vortex solution if � is appropriate.





4

Other Trapping Potentials

In this chapter, we are interested in the minimizers of the energy

Eε(u) =
∫
D

{
1

2
|∇u|2 − �r⊥ · (iu, ∇u) + 1

4ε2

(
|u|2 − ρTF(r)

)2
}

dx dy, (4.1)

for various functions ρTF(r). As before, r = (x, y), r⊥ = (−y, x), (iu, ∇u) =
i(ū∇u − u∇ū)/2, ε is a small parameter, and � is the given rotational velocity. We
assume that D = {ρTF > 0} and ρTF(r) describes respectively a nonradial harmonic
confinement and a quartic trapping potential, that is, the model cases are

ρTF(r) = ρ0 − x2 − α2 y2 with α �= 1 and ρ0 s.t.
∫
D

ρTF = 1, (4.2)

ρTF(r) = ρ0 + (b − 1)r2 − (k/4)r4 and ρ0 s.t.
∫
D

ρTF = 1. (4.3)

In case (4.3), for certain values of b and k, the domain D becomes an annulus, and
this changes the pattern of vortices.

Both cases are motivated by experiments: the first one corresponds to the real
harmonic potential of the experiments [107, 108], since it is never exactly radial but
bears some inhomogeneity. The second case is motivated by recent ENS experiments
[40, 150] in which an extra laser beam is added to the system and thus modifies the
trapping potential so that a giant vortex can be observed (see for instance Figure 1.4,
(f); the hazy region in the center corresponds to a hole).

Fig. 4.1. Experimental vortices for a potential of type (4.3). Courtesy of V. Bretin and J.
Dalibard.
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In the first section, we study case (4.2): the results and techniques are very sim-
ilar to those of the previous chapter, except that now, the critical velocity and the
renormalized energy depend on α. The proofs have been done by Ignat and Millot
[80, 81]. The main difference with the radial case relies on the fact that the vortex-
free solution ηε has a globally defined phase. Thus, in making the splitting of the
energy, the test function is going to be modified to include this global phase.

The next section is devoted to the second model case of ρTF, where D is an
annulus. The topology of D implies that the order of the critical velocities changes:
there a first critical velocity of order 1 above which the minimizer has a degree on
any circle contained in the annulus. This degree is due to the presence of a giant
vortex in the central ball. Then for velocities of order ω0|log ε|+ω1, the giant vortex
has a circulation of order |log ε|. If ω0 < ω∗

0, there are no vortices in the annulus,
while for ω0 > ω∗

0, the number of vortices in the annulus depends on ω1 and they
are arranged on a specific circle (as illustrated in Figure 1.6), which we are able to
characterize.

4.1 Non radial harmonic potential

The results of Chapter 3 can be extended when ρTF is given by (4.2), with ω∗
0 and ωn

1
now depending on α. As before, we will have to restrict our analysis to Dδ = {r ∈
D, dist(|r|2, ∂D) > δ}.
Theorem 4.1. We assume a specific asymptotic form for the rotation �,

� = ω0|log ε| + ω1log|log ε|. (4.4)

Let uε be a sequence of minimizers of Eε in H1
0 (D). Then ω∗

0 = (1 + α2)/ρ0 is a
critical value in the following sense:

(i) If ω0 < ω∗
0 , or if ω0 = ω∗

0 and ω1 < 0, for any δ > 0, if ε is smaller than some
εδ , then uε does not vanish in Dδ . In addition, as ε tends to 0, |uε| converges to√

ρTF in L∞
loc(D), and

Eε(uε) = E(ε) + o(1), (4.5)

where E(ε) does not depend on uε or �.
(ii) If ωn

1 < ω1 < ωn+1
1 , with ωn

1 = (1+α2)(n −1)/ρ0, for any δ > 0, if ε is smaller
than some εδ , uε has exactly n vortices pε

i of degree one in Dδ . Moreover,

|pε
i | < C/

√
� for any i, and |pε

i − pε
j | > C/

√
�,

where C is independent of ε. Let p̃ε
i = pε

i /
√

�. Then the configuration p̃ε
i tends

to minimize the energy w defined in R2n by

w(b1, . . . , bn) = −πρ0

∑
i �= j

log |bi − b j | + πρ0

1 + α2

∑
i

|bi |2α, (4.6)
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where |r|2α = x2 + α2 y2.We have the following asymptotic expansion for the
energy:

Eε(uε) = E(ε) + π

1 + α2
(ω∗

0 − ω0)|log ε|

+n
ρ0

2

(
n − 1 − 2

1 + α2
ω1ρ0

)
log |log ε| + min

R2n
w + Cn,α + o(1),(4.7)

where E(ε) does not depend on uε, and Cn,α is an explicit constant that depends
only on n and α.

We will not include a complete proof here, since it is very similar to that of the
previous chapter. We are only going to point out the major differences and refer to
[80, 81] for details. In order to get the splitting of the energy, we introduce the vortex-
free minimizer fεei Sε of the energy Eε, where fε does not vanish in D. Its phase is
thus globally defined. Given the formulation of Eε, we find that ( fε, Sε) minimize

Fε( f, S) =
∫
D

1

2
|∇ f |2 + 1

2
f 2|∇S|2 − � f 2r⊥ · ∇S + 1

4ε2

(
f 2 − ρTF(r)

)2
.

(4.8)

One can prove, as in the previous chapter for ηε, that f 2
ε converges to ρTF. The

limit S of Sε is more involved to obtain. Formal computations yield that S =
�(α2 − 1)xy/(α2 + 1). Instead of using ηε = fεei Sε to define the ratio vε = uε/ηε,
we use

ηε = gεei S, where S = �
α2 − 1

α2 + 1
xy

and gε minimizes Eε( f ) = Fε( f, 0) among real-valued functions f . For vε =
uε/ηε, we obtain the following splitting of energy:

Eε(uε) = Eε(ηε) + Eηε (vε) where Eηε (v) = Gηε (v) + Lηε (v) + Rηε (v) (4.9)

and

Gηε (v) =
∫
D

|ηε|2
2

|∇v|2 + |ηε|4
4ε2

(|v|2 − 1)2, (4.10)

Lηε (v) = �

α2 + 1

∫
D

|ηε|2∇⊥ρTF · (iv, ∇v), (4.11)

Rηε (v) = 1

2

∫
D

|ηε|2(|v|2 − 1)(|∇S|2 − 2�r⊥ · ∇S). (4.12)

Let us justify this expansion: since gε minimizes Eε among real-valued functions, it
is a solution of an equation that we can multiply by (|vei S|2 − 1) and integrate. We
obtain as in the proof of Lemma 3.7,

Eε(uε) = Eε(gε) + Gηε (vεei S) −
∫
D

|ηε|2�r⊥ · (ivεei S, ∇(vεei S))



82 4 Other Trapping Potentials

= Eε(gεei S) + Gηε (vε) + Rηε (vε) −
∫
D

|ηε|2(�r⊥ − ∇S) · (ivε, ∇vε).

Because of the specific shape of the trapping potential ρTF, it turns out that �r⊥ −
∇S = −�∇⊥ρTF/(α2 + 1), and thus (4.9) holds. If ρTF were another trapping
potential, S would be chosen to minimize (4.8) with f = ρTF. Thus it satisfies
div (ρTF(∇S − �r⊥)) = 0. This implies that there is a potential function ξ such that
ρTF(∇S − �r⊥) = −�∇⊥ξ . In the case of the harmonic potential, ξ is explicit and
is equal to −ρ2

TF/2(1 + α2). In other cases, it is not explicit. As pointed out in the
open problems of the previous chapter, the important property in carrying out our
proof is in fact that max ξ/ρTF is reached at the origin.

The first two terms Gηε and Lηε are very similar to the case α = 1 and are
estimated similarly. For the remainder term Rηε , we can prove that it tends to 0 as ε

tends to 0, using the Cauchy–Schwarz inequality and the fact that
∫
D |ηε|4(|v|2 −1)2

is bounded by Cε2|log ε|2. Let us insist on the fact that it is important to use ηε or
gεei S rather than just |ηε| in the splitting of the energy.

The rest of the estimates follow the same lines as the case α = 1, with the
adaptations |r|2α = x2+α2 y2 replaces the usual norm and the primitive ξ of −rρTF(r)
is now ρ2

TF/2(1 + α2).

4.2 Quartic potential

In this section, we assume that ρTF(r) = ρ0 + (b − 1)r2 − (k/4)r4, ρ0 is such that∫
D ρTF = 1, and b > 1 + (3k2/4)1/3. Thus the domain D = {ρTF > 0} is an

annulus. The results are based on [3]. We are going to consider first the case when
� is of order 1, which provides a giant vortex, and then the case when � is of order
|log ε|, for which there are also vortices arranged on a circle.

4.2.1 Giant vortex

We are going to determine the critical velocities for which the circulation on any
circle contained in D gets bigger than d. This corresponds to the existence of a giant
vortex located in the central hole of the annulus.

As before, the energy Eε splits into two parts, the energy of the density profile
and a reduced energy of the complex phase, which allows us to compute the limiting
energy and identify the size of the giant vortex. Let us introduce the density profile:
it is the minimizer of the energy Eε when � = 0. When � = 0, Eε(η) = Fε(η),
where

Fε(η) =
∫
D

1

2
|∇η|2 + 1

4ε2
(|η|2 − ρTF(r))2. (4.13)

Properties of the minimizer ηε are similar to those proved in Proposition 3.3. For
instance, ηε is real-valued, and η2

ε converges to ρTF in L2(D) and uniformly on any
compact set.
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Theorem 4.2. Let

g0(d) = 1

2
�1d2 − �d, d ∈ Z, where �1 =

∫
D

ρTF(r)

r2
. (4.14)

Let �d = �1(d − 1/2) for d ≥ 1 and �0 = 0. If uε is a sequence of minimizers of
Eε, and �d ≤ � < �d+1, then:

(i) Eε(uε) − Eε(ηε) → g0(d), as ε tends to 0.
(ii) There exists a subsequence ε → 0 and α ∈ C with |α| = 1 such that

uε

ηε

→ αeidθ in H1
loc(D), and |uε

ηε

| → 1, locally uniformly in D.

(iii) For every fixed r such that ∂ Br (0) ⊂ D, deg( uε

ηε
, ∂ Br ) = d for ε sufficiently

small.

The circulation of the giant vortex is thus equal to d and we find that the critical
velocity for having a giant vortex with circulation d is proportional to d.

The proof relies on the splitting of the energy as previously:

Eε(u) = Eε(ηε) + Eηε (v), where Eηε (v) = Gηε (v) + Lηε (v) (4.15)

and

Gηε (v) =
∫
D

η2
ε

2
|∇v|2 + η4

ε

4ε2
(|v|2 − 1)2, (4.16)

Lηε (v) = −
∫
D

η2
ε�r⊥ · (iv, ∇v) dx dy. (4.17)

We need to understand the contributions of the main terms. As before, Gηε will force
vε to have a modulus close to 1. We are going to prove that Eε(vε) tends to g0(d).
The following lemma provides an indication for a lower bound for the energy.

Lemma 4.3. For v ∈ H1(D, S1), let

G0(v) =
∫
D

ρTF

2
|∇v|2 − ρTF�r⊥ · (iv, ∇v). (4.18)

Then for any r such that ∂ Br ⊂ D,

G0(v) ≥ g0(d), where d = deg(v, ∂ Br ),

and g0 is given in (4.14). In particular, the minimum of G0 in H1(D, S1) is achieved,
and any minimizer has the form v0 = αei D0θ , where D0 minimizes g0 in Z and α ∈ C
is a constant with |α| = 1.

Proof: Let v be a smooth function in D with values in S1. The degree of v is constant
on any concentric circle Sr ⊂ D and we call it d. We define the energy of v on the
circle Sr by
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e(r; v) =
∫

Sr

ρTF

2
|∇v|2 − ρTF�r⊥ · (iv, ∇v).

First, we note that ∫
Sr

ρTF�r⊥ · (iv, ∇v) = 2πrρTF(r)�d

depends only on the homotopy class of v. For the other term, the Cauchy–Schwarz
inequality implies

∫
Sr

|∇v|2 ≥
∫

Sr

(iv, ∇v)2 ≥ 1

2πr

(∫
Sr

(iv, ∇v) · τ

)2

= 2πd2

r
. (4.19)

Therefore, we have the lower bound

e(r; v) ≥ 2πρTF(r)

(
1

2

d2

r
− �d r

)
= e

(
r; eidθ

)
(4.20)

for any v ∈ H1(D, S1) and for almost every r ∈ (r0, R0). Integrating (4.20) over r
(recall that we assume

∫
D ρTF(r) dx = 1) we obtain G0(v) ≥ G0(eidθ ) = g0(d).

Now let v be chosen to minimize G0:

g0(d) = G0(e
idθ ) ≤ G0(v) ≤ G0(e

i D0θ ) = g0(D0).

Since D0 minimizes g0 over Z, we conclude that d = D0, and each of the inequalities
above is actually an equality. Since G0(v) = ∫ R0

r0
e(r; v) dr = G0(ei D0θ ) and the

integrands are pointwise bounded by (4.20), we conclude that equality must hold
(almost everywhere) in (4.20), and therefore also in (4.19). The case of equality in the
Cauchy–Schwarz inequality in the integrals over Sr implies that (iv, ∇v) · τ = α(r)

(independent of θ ). Since the degree is independent of Sr , we have

2πα(r)r =
∫ 2π

0
(iv, ∇v) · τ r dθ = 2π D0.

By the equality |(iv, ∇v) · τ | = |∇v| and since |v| = 1, we conclude that the normal
derivative (iv, ∇v) · n is equal to 0. Integrating the relation (iv, ∇v) · τ = D0/r
yields v = ei D(θ−θ0) with θ0 ∈ R constant. ��
Proof of Theorem 4.2: We first derive an upper bound on the energy of the minimiz-
ers. The splitting of the energy yields

Eε(ηεei D0θ ) = Eε(ηε) + Eε(e
i D0θ ). (4.21)

Since η2
ε converges to ρTF, limε→0 Eε(ei D0θ ) = g0(D0). For the minimizer uε, let

vε = uε/ηε. We have Eε(uε) = Eε(ηε) + Eε(vε). We thus get

lim sup
ε→0

Eε(vε) ≤ g0(D0). (4.22)



4.2 Quartic potential 85

Now we want to prove that lim infε→0 Eε(vε) ≥ g0(D0). We are going to show some
weak compactness of vε in the annulus to get the lower bound:∣∣∣∣

∫
D

η2
εr⊥ · (iv, ∇v)

∣∣∣∣ ≤ 1

4

∫
D

η2
ε |∇v|2 + �2

2

∫
D

η2
ε |x |2|v|2

≤ 1

4

∫
D

η2
ε |∇v|2 + C�2

[∫
D

η2
ε(|v|2 − 1) +

∫
D

η2
ε

]

≤ 1

4

∫
D

η2
ε |∇v|2 + 1

8ε2

∫
D

η4
ε(|v|2 − 1)2

+ C�2
[∫

D
|x |4 +

∫
D

ρTF + 1

]
.

Therefore, this and (4.22) imply

g0(D0) + o(1) ≥ 1

4

∫
D

η2
ε |∇vε|2 + 1

8ε2

∫
D

η4
ε(|vε|2 − 1)2 + O(�2).

As a consequence, there exists a constant C (depending on � but independent of ε)
such that ∫

D

(
η2

ε |∇v|2 + 1

ε2
η4

ε(|v|2 − 1)2
)

≤ C. (4.23)

In particular, along some subsequence we have ηε∇vε ⇀ w0 weakly and |vε| → 1
strongly in L2(D). Fix any δ > 0 and let Dδ := {x ∈ D : dist(x, ∂D) > δ}. Then

C ≥
∫
Dδ

η2
ε |∇vε|2 ≥ 1

2

∫
Dδ

ρTF|∇vε|2,

uniformly in ε. Hence, vε is bounded in H1(Dδ) for each δ > 0, and a subse-
quence converges weakly in H1

loc(Dδ), strongly in L2(Dδ), and pointwise almost
everywhere. By a diagonal argument we obtain a limiting function v0, with |v0| = 1
and vε ⇀ v0 in Dδ for each δ > 0. By lower semicontinuity, for each δ > 0,

lim inf
ε→0

∫
D

η2
ε |∇vε|2 ≥ lim inf

ε→0

∫
Dδ

η2
ε |∇vε|2 ≥

∫
Dδ

ρTF|∇v0|2.

We let δ → 0 and obtain v0 ∈ H1
ρTF

(D). By the pointwise convergence, we may also
identify the weak limit w0 above: we have ηε∇vε ⇀

√
ρTF∇v0 weakly in L2(D).

We want to show that this convergence is in fact strong.
The rotation term also converges away from the boundary: by weak convergence

of ∇vε, strong convergence of vε, and uniform convergence of η2
ε in Dδ , we have for

each δ > 0,

�

∫
Dδ

η2
εr⊥ · (ivε, ∇vε) → �

∫
Dδ

ρTFr⊥ · (iv0, ∇v0). (4.24)
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In particular, lim infε→0 Eε(vε;Dδ) ≥ G0(v0;Dδ). Let Nδ = D\Dδ . By Lemma 4.3,
(4.22), (4.24), and the above, we have that for any γ > 0, we may choose ε suffi-
ciently small, so that

γ + G0(v0) ≥ γ + G0(e
i D0θ ) ≥ Eε(vε) ≥ G0(v0;Dδ) + Eε(vε;Nδ) − γ, (4.25)

and hence we may choose ε > 0 small enough so that

Eε(vε;Nδ) ≤ 2γ + G0(v0;Nδ) ≤ 3γ. (4.26)

This allows us to estimate the rotation term in Nδ in a similar way as before, for
δ > 0 sufficiently small:

|�
∫
Nδ

ηεr⊥ · (ivε, ∇vε)|

≤ 1

4

∫
Nδ

η2
ε |∇vε|2 + C�2

[(∫
D

η4
ε(|vε|2 − 1)2

) 1
2

+ (max ρTF)|Nδ|
]

≤ Eε(vε;Nδ) + γ ≤ 4γ,

for ε, δ sufficiently small. Together with (4.24) we conclude that

lim
ε→0

∫
D

ηεr⊥ · (ivε, ∇vε) =
∫
D

ρTFr⊥ · (iv0, ∇v0),

and from above,

lim inf
ε→0

Eε(vε) ≥ G0(v0).

Therefore limε→0 Eε(vε) = G0(v0), so that lim
∫
D ηε|∇vε|2 = ∫

D ρTF|∇v0|2, and
hence ηε∇vε → √

ρTF∇v0 strongly in L2(D), i.e., vε → v0 strongly in H1
loc(D),

with v0 a minimizer of G0, that is, v0 = αei D0θ with |α| = 1.
The uniform convergence of |vε| → 1 in Dδ for any δ > 0 follows from the

same arguments as Step A.2 of the proof of Theorem 1 of [33], since the matching
of the upper and lower bounds on Eε(vε;D) implies

1

ε2

∫
D

η4
ε(|v|2 − 1)2 = o(1).

This completes the proof of Theorem 4.2. ��
A recent paper of André, Bauman, and Phillips [21] deals with the case when

ρTF(x) is allowed to vanish at isolated points. Their model originates from supercon-
ductivity. They show that when the applied field (which plays the role of our angular
speed �) is large but fixed (independent of ε), minimizers have nonzero degree. The
vortices are pinned to the zeros of ρTF, and none appear in the region where ρTF > 0.
In their result, it is important that

√
ρTF is in H1, which is not the case here. In par-

ticular, the profile of the condensate is singular near the boundary, and contributes to
a divergent term in the expansion of energy. We overcome this difficulty by a split-
ting of the energy to separate the contribution of the vortices from that of the singular
boundary layer.
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4.2.2 Circle of vortices

As in the model case ρ0−r2, vortices become energetically favorable in the bulk D at
a critical value of the rotation �∗ = O(|log ε|). In our model case, they are nucleated
close to the origin, because it is the location of the maximum of the potential function
ξ/ρTF, proportional to ρTF. We show that the same general principle holds in the
annular case: vortices are nucleated close to the point of maximum of ξ/ρTF, which
is now an inner circle. This is due to the fact that giant vortex exerts a repulsive
force on free vortices in the interior of D, which effectively balances the force of the
rotation. Hence vortices lie on a specific circle.

We will identify D with the annulus BR0 \ B R1 .

Theorem 4.4. We assume a specific asymptotic form for the rotation �:

� = ω0|log ε| + ω1log|log ε|. (4.27)

Let ρ be such that (log|log ε|)−1/2 � ρ � 1, Dρ be defined as

Dρ = {r ∈ D, dist(r, ∂D) > ρε}. (4.28)

Then, there exist constants ω∗
0, ω∗

1 such that if uε is a sequence of minimizers of Eε

in H1
0 (D), the following hold:

(i) If either ω0 < ω∗
0 or both ω0 = ω∗

0 and ω1 < −ω∗
1 , then for all ε sufficiently

small, |uε| does not vanish in Dρ .
(ii) If ω0 = ω∗

0 and ω1 > 0, then for all ε sufficiently small, any vortex in Dρ has
positive degree and is localized on the circle C of radius r0 characterized by the
fact that r0 minimizes ξ(r)/ρTF(r) in (R1, R0), where

ξ(r) :=
∫ R0

r
ρTF(s)

(
s − 1

�1 s

)
ds, �1 =

∫
D

ρTF(s)

s2
. (4.29)

For any circle Cr with r > r0,

deg

(
u

|u| , Cr

)
− deg

(
u

|u| , Cρ

)
> 0.

Note that given the definition of �1 and the constraint on ρ0 in (4.3), ξ(R1) = 0. As
in the previous chapter, there may exist vortices near the edges of D, but the value of
ρTF being very small near ∂D, we have no way of controlling these outlying vortices.

As previously, we decouple the energy of uε = ηεvε into the energy of ηε plus
another term that we need to estimate. But we refine our splitting of energy to in-
corporate the effect of the giant vortex: we use the configuration ηεei Dεθ in fact as
comparison function. Our asymptotic expansion of the energy leads to the appear-
ance of a new potential function ξ defined in (4.29): ξ(r) ≥ 0, ξ(R1) = ξ(R0) = 0,
and

max
r∈[R1,R0]

ξ(r)

ρTF(r)
=: K0 > 0, (4.30)
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is attained at r0. We show that ω∗
0 = 1/(2K0) gives the desired critical value of

rotation, in the sense that when ω0 < ω∗
0, minimizers have no vortices inside Dρ . On

the other hand, if ω0 = ω∗
0 and ω1 > 0, vortices converge to the circle C of radius r0.

The proof follows the arguments in Section 3.3: the lower bound on the energy leads
to the upper bound on the number of vortices, the positivity of the degrees, and their
location on C.

The rest of this section is devoted to the proof of Theorem 4.4.

Splitting the energy

We refine our splitting of energy to incorporate the effect of the giant vortex. We
define vε through

uε = ηεei Dεθ vε, with Dε =
[

�

�1

]
, (4.31)

where [x] denotes the closest integer to x and �1 is given by (4.14). Recall that
� = O(|log ε|). Since ei Dεθ is smooth and of modulus one in the annulus D, it
follows that v is well defined, and (4.15) and a direct calculation yield

Eε(uε) = Eε(ηε) + Eε(e
i Dεθ vε)

= Eε(ηε) + 1

2
�ε D2

ε − � Mε Dε + Ẽηε (vε), (4.32)

with

�ε =
∫
D

η2
ε

|x |2 and Mε =
∫
D

η2
ε |vε|2, (4.33)

Ẽηε (v) =
∫
D

η2
ε

2
|∇v|2 − η2

ε�X · (iv, ∇v) + η4
ε

4ε2
(|v|2 − 1)2, (4.34)

where X = x⊥ − Dε

�
∇θ .

Using ηεei Dεθ as a test function for an upper bound, we find that if uε is a
minimizer, then Ẽηε (vε) ≤ 0. Our aim is to compute a lower bound and thus locate
the vortices. The rest of the proof follows the lines of Section 3.3.

Vortex balls

Our first step is to excise a thin neighborhood of the two edges where ρTF(r) van-
ishes. Let

δ = δε = (log |log ε|)1/4

|log ε| , (4.35)

and
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Dδε := {r ∈ D : dist(r, ∂D) > δε}, Nε := D \ Dδε .

Then, by familiar arguments we have

�

∫
Nε

η2
εX · (iv, ∇v) ≤ 1

2

∫
Nε

η2
ε |∇v|2 +

∫
Nε

η4
ε

8ε2
(|v|2 − 1)2 + C

√
log|log ε|.

(4.36)

In particular, Ẽηε (v;Nε) ≥ −C
√

log|log ε|, and consequently,

Ẽηε (v;Dδε ) ≤ C
√

log|log ε| (4.37)

for any minimizer.
Note that by the same steps as in (3.36) above,

�

∫
Dδε

η2
εX · (iv, ∇v) ≤ 1

4

∫
Dδε

η2
ε |∇v|2 + 1

8ε2

∫
Dδε

η4
ε(|v|2 − 1)2 + C�2,

(4.38)

and hence from (4.37) we obtain the useful estimate

∫
Dδε

{
η2

ε |∇v|2 + η4
ε

ε2
(|v|2 − 1)2

}
≤ C�2 = O(|log ε|2), (4.39)

with C independent of ε.
We now define

Ẽε(v) :=
∫
Dδε

{
ρTF

2
|∇v|2 − �ρTFX · (iv, ∇v) + ρ2

TF

4ε2
(|v|2 − 1)2

}
, (4.40)

and using the estimates on (η2
ε − ρTF), we conclude that

Ẽε(v) ≤ Ẽηε (v;Dδε )
(

1 + o(ε1/3|log ε|)
)

≤ C
√

log|log ε|. (4.41)

Moreover, the bounds (4.38), (4.39) also hold with ρTF replacing η2
ε :

∫
Dδε

ρTF|∇v|2 + ρ2
TF

ε2
(|v|2 − 1)2,

∣∣∣∣∣�
∫
Dδε

ρTFX · (iv, ∇v)

∣∣∣∣∣ ≤ C�2. (4.42)

Now in Dδε we may isolate the vortices using the method of Sandier [133] and
Sandier and Serfaty [135]. We have the following result:

Proposition 4.5. For any C > 0 there exist positive constants ε0, C0 such that for
any ε < ε0, � ≤ C |log ε|, and any v with Ẽε(v) ≤ C/|log ε| there exists a finite
collection {Bi = B(pi , si )}i=1,...,m of disjoint balls such that
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{
x ∈ Dδε : |v| < 1 − |log ε|−5

}
⊂

m⋃
i=1

Bi ; (4.43)

m∑
i=1

si < |log ε|−10; (4.44)

deg∂ Bi

(
v

|v|
)

:= di for all i; (4.45)∫
Bi

ρTF

2
|(∇ − i�X)v|2 ≥ πρTF(pi )|di | (|log ε| − C0log|log ε|) for all i. (4.46)

Potential function ξ

For δ > 0 and θ ∈ R, let us define

ξθ,δ(r) :=
∫ R0−δ

r
ρTF(s)

(
s −

(
1

�1
− θ

)
1

s

)
ds. (4.47)

Here we take δ = δε as in (4.35), and

θ = θε = 1

�1
− Dε

�
=

(
�

�1
−

[
�

�1

])
1

�
,

so that

|θε| ≤ 1

�
= O(|log ε|−1). (4.48)

The reason why ξθε,δε enters into our problem is that it is the primitive of the vector
field ρTF(r)X that vanishes at the outer edge of Dδε :

∇⊥ (
ξθε,δε (r)

) = ρTF(r) X, ξθ,δ(R0 − δ) = 0, (4.49)

for any δε, θε. It will be important later on to notice that

ξ ′
θ,δ(R1) = 0 = ξ ′

θ,δ(R0), (4.50)

and when θ = 0 = δ,

ξ0,0(R1) = 0 = ξ0,0(R0), ξ0,0(r) > 0 for all r ∈ (R1, R0). (4.51)

Lemma 4.6. Let r0 be the point where ξ0,0(r)/ρTF(r) reaches its maximum and let
K0 = ξ0,0(r0)/ρTF(r0). There exist constants K2, K3 > 0 such that

|ξθε,δε (r)|
ρTF(r)

≤ K0 + K2

|log ε| (4.52)

whenever r ∈ (R1 + δε, R0 − δε), and

|ξθε,δε (r)|
ρTF(r)

≤ K0 − K3√|logε| (4.53)

when |r − r0| ≥ |log ε|−1/2M for some M ≥ 1.
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Proof: We have

|ξθε,δε (r) − ξ0,0(r)| ≤ C(|θε| + δε
2), (4.54)

with a constant C independent of ε. There exist constants α and a0 such that for any
γ > 0 sufficiently small,

ρTF(r) ≥

⎧⎪⎨
⎪⎩

α(r − R1), if R1 < r < R1 + γ,

a0, if R1 + γ ≤ r ≤ R0 − γ,

α(R0 − r), if R0 − γ < r < R0.

When R1 + δε < r < R1 + γ , we calculate

|ξθε,δε (r)| ≤ |ξ0,0(r)| + C(|θε| + δε
2) ≤ C(r − R1)

2 + C(|θε| + δε
2),

using (4.49), (4.50), and (4.51). Therefore,

|ξθε,δε (r)|
ρTF(r)

≤ C

α
γ + C

α

(
|θε| + δε

2

δε

)
≤ Cγ + O([log|log ε|]−1/4) <

1

2
K0,

(4.55)

by fixing a value of γ sufficiently small. An analogous estimate holds on the interval
[R0 − γ, R0 − δε].

It remains to consider the larger interval R1 + γ ≤ r ≤ R0 − γ . Since∣∣∣∣ξθε,δε (r)

ρTF(r)
− ξ0,0(r)

ρTF(r)

∣∣∣∣ ≤ C

a0
(|θε| + δε

2) ≤ C |log ε|−1,

the conclusion follows from the definition of r0. ��

A lower-bound expansion

We define C to be the circle of radius r0.
The proof is based on a detailed lower-bound expansion of the energy in terms

of the location and degrees of the vortex balls (Bi ) constructed in Proposition 4.5.
First, we consider the energy in the balls themselves. We have∫

Bi

ρTF

2

(
|∇v|2 − 2�X · (iv, ∇v)

)
=

∫
Bi

ρTF

2

(
|(∇ − i�X)v|2 − �2|X |2|v|2

)
≥ πρTF(pi )|di |(|log ε| − C0log|log ε|) − o(1),

(4.56)

from Proposition 4.5, where we have estimated the extra term using (4.44). We may
also evaluate the cross-term in the region Dε \∪Bi in terms of the potential functions
ξθε,δε introduced in the previous paragraph. First note that by slightly modifying our
choice of δε we may be sure that no vortex ball intersects the inner or outer boundary
∂ BR1+δε (0), ∂ BR0−δε (0) of the annulus Dδε . Indeed, if this is not the case by (4.44)
we may find a constant kε ∈ [1, 2) such that replacing δε

′ = kεδε we may avoid
vortex balls intersecting the boundary.
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Lemma 4.7. Let d0 = deg(v/|v|; ∂ BR1+δε ). Then,

�

∫
Dδε \∪Bi

ρTF(x) X · (iv, ∇v) = −2πd0 ξθε,δε (R1 + δε) �

+
∑

i

2πdi ξθε,δε (|pi |) � + o(1). (4.57)

The proof is similar to that of Lemma 3.11. We do not repeat it. The only dif-
ference lies in the existence of d0, which is estimated similarly but with the opposite
sign.

Putting (4.56) and (4.57) together we obtain the lower bound

O(
√

log|log ε|) ≥ Ẽε(v)

≥ π
∑

ρTF(pi )|di | (|log ε| − C0log|log ε|) − 2π
∑

diξθε,δε (|pi |) �

−2πd0ξθε,δε (R1 + δε) � + 1

2

∫
Dδε \∪Bi

ρTF |∇v|2 + o(1). (4.58)

The behavior of ρTF(r) and ξ0,0(r) allow us to choose γ > 0 (independent of ε)
such that

R1 + γ < r0 < R0 − γ,

ρTF(r) ≥ a0 := min{ρTF(R1 + γ ), ρTF(R0 − γ )} for all r ∈ [R1 + γ, R0 − γ ],

and

ξ0,0(r)

ρTF(r)
<

K0

3
for all r ∈ (R1, R1 + γ ) ∪ (R0 − γ, R0). (4.59)

Let

Zγ := {i : δε < dist(pi , ∂D) ≤ γ,

Z∗ := {i : dist(pi , C) < |log ε|−1/2M and di ≥ 0},
Z− := {i : dist(pi , C) < |log ε|−1/2M and di ≤ 0},
Z0 := (Z∗ ∪ Z− ∪ Zγ )C ,

and set

Nx :=
∑
Zx

ρTF(pi )|di |, x = γ, ∗, −, 0; N̂ =
∑

i

ρTF(pi )|di |.

In fact, N̂ = Nγ + N∗ + N− + N0.
For vortices pi with i ∈ Zγ , we use (4.55) and (4.59) to derive

|ξθε,δε (|pi |)|
ρTF(pi )

<
K0

2
. (4.60)

Lemma 4.6 and (4.58) then yield
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C
√

log|log ε| ≥ π N̂ (|log ε| − C0log|log ε|)
−2π K0 N∗

[
1 + O(|log ε|−1)

]
(ω0|log ε| + ω1log|log ε|)

+2π K0 N−
[
1 + O(|log ε|−1)

]
(ω0|log ε| + ω1log|log ε|)

−2π K0 Nγ

[
1

2
+ O(|log ε|−1)

]
(ω0|log ε| + ω1log|log ε|)

−2π K0 N0

[
1 − K4√|log ε|

]
(ω0|log ε| + ω1log|log ε|)

−2πd0ξθε,δε (R1 + δε)� +
∫
Dδε \∪Bi

ρTF

2
|∇v|2 + o(1). (4.61)

One difficulty in dealing with this lower bound expansion is the boundary term
at R1 + δε, since we have no a priori bound on the degree d0 of the inner edge of the
annulus. We must consider two cases separately.

Case I: |d0| ≤ 2
∑ |di |.

Recalling (4.50), (4.51), and the behavior of ρTF(r) near r = R1, we have

0 <
ξ0,0(R1 + δε)

ρTF(R1 + δε)
≤ Cδε.

With (4.54) we obtain

|ξθε,δε (R1 + δε)| ≤ CδερTF(R1 + δε) + C(|θε| + δε
2)

≤ C

(
δε + |θε|

ρTF(R1 + δε)

)
ρTF(R1 + δε)

≤ C

[log|log ε|]1/4
ρTF(R1 + δε).

Hence,

∣∣d0 � ξθε,δε (R1 + δε)
∣∣ ≤ C

[log|log ε|]1/4
ρTF(R1 + δε)|log ε|

∑
|di |. (4.62)

Hence

2π |d0 � ξθε,δε (R1 + δε)| ≤ C

[log|log ε|]1/4
ρTF(R1 + δε)|log ε|

∑
Zγ ∪ZC

γ

|di |

≤ C |log ε|
[log|log ε|]1/4

∑
Zγ

ρTF(pi )|di | + Cδε

[log|log ε|]1/4

∑
ZC

γ

ρTF(pi )

a0
|di |

≤ π

8
|log ε|

∑
Zγ

ρTF(pi )|di | + C

|log ε|
∑
ZC

γ

ρTF(pi )|di |.

We now substitute back into the lower bound for the energy (4.61):
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C
√

log|log ε| ≥ π(N∗ + N0)|log ε|(1 − 2K0ω0)

+π N−|log ε|(1 + 2K0ω0)(1 + o(1)) + π Nγ |log ε|
(

7

8
− K0ω0

)
(1 + o(1))

−π N∗(C0 + 2K0ω1)log|log ε| + C N0
√

|log ε| +
∫
Dδε \∪Bi

ρTF

2
|∇v|2. (4.63)

In this step we have used Lemma 4.6, (4.60), and the choice of the angular speed
(4.27).

Our first step is to conclude that there are no vortices in the bulk when the speed
is too small. Let ω∗

0 = 1
2K0

. From (4.63), we derive

ω0 < ω∗
0, and then N̂ =

∑
ρTF(pi )|di | ≤ C

√
log|log ε|
|log ε| .

Suppose ω0 = ω∗
0 and

ω1 < − C0

2K0
.

Then each term on the right-hand side of (4.63) is nonnegative, and we conclude that

N̂ =
∑

ρTF(pi )|di | ≤ C[log|log ε|]−1/2.

Because of the weight ρTF we cannot conclude that the total degree of vortices in
Dδε is zero, but we can make that conclusion if we restrict our attention to a smaller
domain. Let ρ = ρε � (log|log ε|)−1/2. Then

ρε

∑
dist(pi ,∂D)>ρε

|di | ≤ N̂ ≤ C[log|log ε|]−1/2,

which implies ∑
dist(pi ,∂D)>ρε

|di | = o(1),

that is, there are no vortices at any distance larger than [log|log ε|]−1/2 from ∂D
when the rotation is slower than this critical value.

When the angular speed is larger,

ω1 > − C0

2K0
, (4.64)

we rearrange the terms in (4.63) to arrive at

(N0 + N− + Nγ )
√

|log ε| ≤ C N∗log|log ε| + C
√

log|log ε|, (4.65)

with C independent of ε. We are going to bound N∗ and therefore infer that the
essential contribution to the weighted sum of vortices in the bulk is due to positive-
degree vortices concentrating at the minimal set C. To complete the argument we
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must use the remaining term in the energy. Define Iε := (R1 + δε, R0 − δε). By
Proposition 4.5 the set

Jε :=
{

r ∈ Iε : ∂ Br (0) ∩
⋃

Bsi (pi ) = ∅
}

is a finite union of intervals whose complement |Iε \ Jε| < |log ε|−12 has very small
measure. For each r ∈ Jε, |v| ≥ 1 − |log ε|−4, and hence we may define

D(r) := deg

(
v

|v| , ∂ Br (0)

)
.

Let r1 := R1 + γ , r2 := R0 − γ , and fix any t1, t2 with

r1 < t1 < r0 < t2 < r2.

Note that r1, r2, t1, t2 are all independent of ε. In (r1, r2), we recall that ρTF(r) ≥
a0 > 0.

On the one hand,

|D(t1) − D(r1)| =
∣∣∣∣∣

∑
t1<|pi |<r1

di

∣∣∣∣∣ ≤
∑

t1<|pi |<r1

ρTF(pi )

a0
|di | ≤ N0

a0
≤ o(1)N∗.

In the same way we show that |D(r2) − D(t2)| ≤ o(1)N∗. Finally,

|D(t2) − D(t1)| =
∣∣∣∣∣

∑
t1<|pi |<t2

di

∣∣∣∣∣ ≥
∑

t1<|pi |<t2
di ≥0

di −
∑

t1<|pi |<t2
di <0

di

≥ 1

ā
N∗ − C(N− + N0) ≥ 1

ā
N∗(1 − o(1)).

In particular, it follows that

min{|D(t1)|, |D(t2)|} ≥ 1

2ā
N∗. (4.66)

Suppose that |D(t1)| ≥ 1
2ā N∗. Then we have |D(r)| ≥ 1

4ā N∗ for every r ∈ [r1, t1].
Writing v = |v|eiφ (for |x | = r ∈ Jε) we estimate the remaining term in the energy
as follows, using that in Jε, |v| ≥ 1 − |log ε|−4:∫

Dδε \∪Bi

1

2
|∇v|2 ≥

∫
Jε

∫ 2π

0

ρTF(r)

2
|v|2|∇φ|2 r dθ dr

≥
∫

Jε

∫ 2π

0

ρTF(r)

2
|∇φ|2 r dθ dr(1 + o(1))

≥ π

∫
Jε

ρTF(r)

r
(D(r))2 (1 + o(1))

≥ C N 2
∗ (1 + o(1)). (4.67)
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Returning to the estimate (4.63) we see that

C
√

log|log ε| ≥ C1 N 2
∗ − C2 N∗log|log ε| + o(1),

with constants C1, C2 independent of ε. We conclude that

N∗ ≤ C log|log ε|. (4.68)

With (4.65) and (4.68) we have

max{N−, N0, Nγ } ≤ C
(log|log ε|)2

|log ε|1/2
.

As before, we need to further restrict the domain in order to come to a conclusion as
to the total degree in the annulus. Take any ρε with

ρε � (log|log ε|)2

|log ε|1/2
,

and then

∑
dist(pi ,C)>|log ε|−1/2M

dist(pi ,∂D)>ρε

|di | +
∑
di <0

dist(pi ,∂D)>ρε

|di | ≤ C
(log|log ε|)2

|log ε|1/2ρTF(ρε)
→ 0.

Since the left-hand side is now an integer, it must be exactly zero for ε sufficiently
small.

Finally, we consider the degree of the neighborhood of the edge of the annulus.
From the previous paragraph we observe that D(r) ≡ D1 is constant in the interval
r ∈ [R1 + ρε, t1]. We return to the lower bound (4.63) to obtain

C
√

log|log ε| + C N∗log|log ε| ≥
∫
Dδε \∪Bi

a

2
|∇v|2

≥ π

∣∣∣∣
∫ s1

r1

a

r
(D(r))2 dr

∣∣∣∣ + o(1)

≥ C D2
1 .

In particular, given the bound (4.68) we have∣∣∣∣deg

(
v

|v| , ∂ BR1+ρε (0)

)∣∣∣∣ = |D1| ≤ C log|log ε|.

Note that this confirms that we have made a good choice of the degree Dε of the
giant vortex, since for the original wave function u we have

deg

(
u

|u| , ∂ BR1+ρε (0)

)
= Dε + O (log|log ε|) .
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Let us check that for ω1 > 0, there is at least one vortex. We construct a test
function of the form u = ηεei Dεθ vp0 , where vp0 has a vortex on C: vp0(x) = fε(|x −
p0|) x−p0

|x−p0| , where |p0| ∈ C, fε(0) = 0, and fε(R̂) = 1. If we fix R̂ > 0 such that
D ⊃ BR̂(p0) we then have

E(vp0) ≤
∫

BR̂(p0)

(
ρTF

2
|∇ fε|2 + ρ2

TF

4ε2
( f 2

ε − 1)2 + ρTF

r2
f 2
ε

)

−2π� ξθε,δε (|p0|) + o(1) ≤ πρTF(r0)|logε|
−2π

(
1

2K0
|logε| + ω1log|logε|

) (
K0ρTF(r0) + O(|logε|−1)

)
+ C

≤ −2π K0ρTF(r0)ω1log|logε| + C.

We now return to our lower bound from (4.63). We now know that N0, N−, Nγ are
o(1), and therefore with this improved upper bound we obtain

−π N∗(C0 + 2K0ω1) ≤ −2π K0ρTF(r0)ω1 + o(1).

This can be rewritten in the form of a lower bound for N∗,

N∗ ≥ 2K0ρTF(r0)ω1

C0 + 2K0ω1
+ o(1),

and hence for ω1 > 0, we must have at least one vortex. This concludes the analysis
for Case I.

Case II: |d0| > 2
∑ |di |.

Let D(r), Jε be as in the previous part, so

|D(r)| =
∣∣∣∣∣d0 +

∑
|pi |≤r

di

∣∣∣∣∣ ≥ 1

2
|d0| for all r ∈ Jε.

We then estimate as before,∫
Dδε \∪Bi

ρTF

2
|∇v|2 ≥

∫
Jε

∫ 2π

0

ρTF

2
|v|2|∇φ|2

≥ π

∫
Jε

ρTF

r
(D(r))2 dr + o(1)

≥ π

2
d2

0

∫
Jε

ρTF

r
dr = C1d2

0 . (4.69)

On the other hand, in Case II, using the estimate

∣∣2πd0 � ξθε,δε (R1 + δε)
∣∣ ≤ C

(log|log ε|)1/4
d0δε|log ε| ≤ C2|d0|

for ξθε,δε , from (4.58) we get
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C
√

log|log ε| ≥ Ẽε(v)

≥ C1d2
0 − C2d0 + π

∑
ρTF(pi )|di | (|log ε| − C0log|log ε|)

−2π
∑

diξθε,δε (|pi |) � + o(1).

We may now repeat the same steps as in Case I (although we no longer need to
distinguish Zγ , Nγ ) to derive

C
√

log|log ε| ≥ C1d2
0 − C2|d0| + C3(N0 + N−)

√
|log ε| − C N∗log|log ε|,

and hence

(N− + N0) ≤ C

√
log|log ε|
|log ε| + C |d0| log|log ε|√|log ε| .

This leads again to

C1d2
0 − C |d0|log|log ε| ≤ C

√
log|log ε|

and thus the same conclusions as in Case I. This completes the proof of Theorem 4.4.
��

4.3 Open questions

4.3.1 Circle of vortices

Open Problem 4.1 Assume that � = ω∗
0 |log ε| + ω1, and prove that according to

the value of ω1 in some interval (ωn
1 , ωn+1

1 ), the minimizer has n vortices located on
a specific circle of radius r0.

The difficulty relies on the improvement of (4.67) to N 2∗ log|log ε|, which provides
that N∗ is bounded. Then the refined structure of vortices can be analyzed as in
Section 3.4. A totally new feature, as mentioned after Open Problem 3.3, is that when
there are n vortices in the system, they are no longer at distance 1/

√|log ε|, but at
distance of order 1. The logarithm involved in the renormalized energy w should be
replaced by something else.

4.3.2 Giant vortex or isolated vortices

If one replaces the problem in D = BR0 \ B R1 by the problem in BR0 but with the
same geometry for the set {ρTF > 0}, then the results of Theorem 4.2 still hold. It
is an open question to prove that the minimizer has a giant vortex of degree d at the
origin or d vortices of degree 1 in the region BR1 where its modulus is exponentially
small.
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High-Velocity and Quantum Hall Regime

When the velocity gets large, the size of the condensate and the number of vortices in-
crease: a dense lattice is observed [1, 47, 58, 141], referred to as an Abrikosov lattice
due to the analogy with superconductors. The description of the vortex lattice at high
rotational velocity has been the focus of very recent papers in the condensed-matter
physics community, starting with the seminal paper of Ho [79] and very recently by
[64, 27, 49, 154, 147]. Our aim is to provide mathematical insight into the lattice
pattern.

The mathematical interest of such a system can be related to homogeneous me-
dia, since there are two scales emerging: the size of vortices (of order 1) and the
size of the condensate (much larger). In this regime, vortices have approximately the
same size as their mutual distance, which is very different from the lower rotation
regime. Hence different mathematical tools need to be introduced.

This chapter is dedicated to the study of minimizers ψ ∈ L2(R2, C) of

ELLL(ψ) =
∫

R2

(1 − �2)

2
r2|ψ |2 + Na

2
|ψ |4 under

∫
R2

|ψ |2 = 1, (5.1)

where ψe�|z|2/2 is a holomorphic function. Here � is the rotational velocity and
tends to 1; N , a are given parameters; and r = (x, y) or equivalently z = x + iy. We
will identify complex numbers and vectors in R2, and in particular dz will denote the
two-dimensional Lebesgue measure dx dy. We will construct a test function (which
we believe is close to the minimizer) and this will provide an upper bound for the
energy. The lower bound and � convergence properties are still open.

We will first explain the reduction from the Gross–Pitaevskii energy to this prob-
lem, then present our main results, proofs, and open questions. The results rely on
the works [5, 7, 8].
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5.1 Introduction

5.1.1 Lowest Landau level

Let us first present how the Gross–Pitaevskii energy (1.17) can be reduced to (5.1).
For fixed �, if the trapping frequencies along the x and y directions are much smaller
than along the z direction (that is, β in (1.17) is large), it has been proved [98] that the
wave function decouples into ψ(x, y)ξ(z), where ξ is a Gaussian in the z direction
and ψ minimizes the reduced two-dimensional Gross–Pitaevskii energy. In the fast-
rotation regime, we will see below that the effective trapping frequencies in the x
and y directions,

√
1 − �2 and α

√
1 − �2, are much smaller, as � tends to 1, than

the frequency in the z direction, which is fixed. Thus one can expect the same type
of reduction into ψ(x, y)ξ(z), where ξ is a fixed Gaussian in the z direction and ψ

minimizes the reduced two-dimensional energy depending on �. The rigorous proof
of the reduction to a two-dimensional problem is still open, but a 2D description is
expected to be satisfactory. This is what we will use.

The energy taking into account the 2D reduction can be written (we set α = 1
for simplicity)

E(ψ) =
∫

R2

1

2
|∇ψ − i��� × rψ |2 + 1

2
(1 − �2)r2|ψ |2 + 1

2
Na|ψ |4, (5.2)

under
∫

R2 |ψ |2 = 1. The rescaled rotational velocity is along the z axis: ��� = �ez .
With respect to (1.17), we have added and subtracted �2r2|ψ |2/2 to get a complete
square in the first term. In order for the trapping potential to remain stronger than
the rotating force, we need to have � < 1, so that the energy is bounded below. The
minimization is performed in R2 and not just in a bounded domain, because the size
of the condensate increases as � approaches 1.

This regime displays a strong analogy with quantum Hall physics: the first term
in the energy is identical to the energy of a particle placed in a uniform magnetic
field 2���. The minimizers for∫

R2

1

2
|∇ψ − i��� × rψ |2 under

∫
R2

|ψ |2 = 1 (5.3)

are well known [104] through the study of the eigenvalues of the operator −(∇−i���×
r)2. The minimum is � and the corresponding eigenspace is of infinite dimension and
called the lowest Landau level (LLL). This can be studied using a change of gauge
and a Fourier transform in one direction. The other eigenvalues are (2k+1)�, k ∈ N.
A basis of the first eigenspace is given by

ψ(x, y) = P(z)e−�|z|2/2 with z = x + iy, (5.4)

where P varies in a basis of polynomials. The closure of this space in L2(R2) is
made up of functions of the type (5.4) where P varies in the space of holomorphic
functions. In this framework, vortices are the zeros of the polynomial or holomorphic
function and are thus easy to identify.



5.1 Introduction 101

We will see that as � approaches 1, the second and third terms in the energy
(5.2) produce a contribution of order

√
1 − �, which is much smaller than the gap

2� between two eigenvalues. Thus, it is natural, as a first step, to restrict to the
eigenfunctions of the first eigenvalue and find the minimizer of the energy in this
reduced infinite-dimensional space, but we are not able to provide a full rigorous
justification of this restriction. When ψ is restricted to the lowest Landau level (5.4),
the energy (5.2) is equal to

E(ψ) = � + ELLL(ψ),

where ELLL is given by (5.1). The aim of this chapter is to minimize ELLL(ψ) in
the space (5.4). The modulus of the wave function and the location of the zeros are
plotted in Figure 1.7 for � = 0.999. We will see that the characteristic size of the
condensate, that is, the region where the wave function is significant (left part of
Figure 1.7), is proportional to (1 − �)−1/4. In this region, vortices are arranged on
a triangular lattice, while outside, the wave function is of small amplitude, yet the
analysis of the zeros is still of interest.

5.1.2 Construction of an upper bound

The mathematical description of the vortex structure involves the definition of a
hexagonal or triangular lattice: in what follows, � = ν(Z + τZ), with ν ∈ R+ denot-
ing a hexagonal lattice if τ = e2iπ/3. The unit cell centered at the points of the lattice
is called Q and has volume V . The symbol −

∫
denotes the average of an �-periodic

function: −
∫

f = 1
V

∫
Q f. Our main result is the construction of a test function that

provides an upper bound for the energy:

Theorem 5.1. There exists a sequence of functions ψ� of the form (5.4) such that as
� tends to 1,

ELLL(ψ�) ∼ 2
√

2

3

√
Nab

π
(1 − �), where b = −

∫ |η|4
(−
∫ |η|2)2

(5.5)

and |η| is a periodic function that vanishes at each point of the lattice � and
η(z)e�|z|2/2 is a holomorphic function.

The parameter b carries the averaged energy contribution of the vortex lattice in each
cell, while the numerical coefficient in front of the square root is due to the shape
of the slowly varying profile of the wave function. The parameter b is called the
Abrikosov parameter [2, 93], since it arises in the study of superconductors near the
second critical field. An approximate value is 1.16. In fact, b minimizes the ratio
given in (5.5) among all possible lattices and functions having the properties of η

[93, 8]. The function η is explicit, as we will see below.
The construction of the test function is inspired by the numerical computations

in [7]: we minimize the energy (5.1) for test functions (5.4). We use a description of
the polynomials P by its roots zi and find the optimal location of the zi through a
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conjugate gradient method. It provides the following pattern for vortices (see Figure
1.7): in a central region, vortices are located on a regular triangular lattice, while
the lattice is distorted towards the edges. The density plot of |ψ | shows that the only
visible vortices are the ones in the regular lattice part, the outer ones being in a region
of very low density. Our test function in Theorem 5.1 is intended to reproduce this
pattern.

Regular lattice

Let us first explain, for the case of a regular lattice, how a large number of zeros
in the test function can modify its decay at infinity: if the vortices are located on a
regular lattice, the wave function decays like a Gaussian and we provide a rigorous
proof of the energy estimate obtained by Ho [79].

Theorem 5.2. Let � be a regular hexagonal lattice, Q a unit cell, and V = |Q| >

π/�. Let

ψR(z) = AR

∏
j∈�∩BR

(z − j)e−�|z|2/2 (5.6)

with AR chosen such that ‖ψR‖L2(R2) = 1. Then as R tends to ∞,

|ψR(z)| → ψ(z) = 1√
πσ

|η(z)|e−|z|2/(2σ 2) in L p
(

R2, (1 + |z|2)dz
)

(5.7)

for all p ≥ 1, where

1

σ 2
= � − π

V
(5.8)

and η is as defined in Theorem 5.1. Moreover, |η| satisfies −� (log|η|) = 2πδ0 −
2π/V in Q, with periodic boundary conditions. In addition, limR→∞ ELLL(ψR) =
ELLL(ψ). As σ tends to infinity, then

ELLL(ψ) ∼ (1 − �2)

2
σ 2 + 1

4

Nab

πσ 2
. (5.9)

The main feature of the periodic lattice is to modify the decay of the Gaussian from
e−�|z|2/2 to e−|z|2/2σ 2

, where σ depends on the volume through (5.8). We need to
choose the optimal σ in (5.9), which yields

σ 4(1 − �2) = 1

2

Nab

π
. (5.10)

This value of σ indeed satisfies σ → ∞ as � tends to 1. The volume condition (5.8)

matched with the value of σ in (5.10) implies V = π
(
� +

√
2π(1 − �2)/(Nab)

)
.

The estimate of the energy is thus
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ELLL(ψ) ∼
�→1

√
Nab

π
(1 − �). (5.11)

This is to be compared to (5.5), which is better by a factor
√

8/9, but is of the same
magnitude, since 1 − � is small. Let us emphasize the presence of the coefficient b:
it takes into account the averaged vortex contribution on each cell. As in the case of
superconductors near Hc2 , for the Abrikosov lattice, the optimal lattice minimizing
the ratio b is the hexagonal one [93]. Note that our proof could hold with other
lattices than the hexagonal one, but the corresponding coefficient b would be higher.

The function η is explicit and related to the Abrikosov problem [2, 93]:

η(z) = e�z2/2e−�|z|2/2�(λz, e2iπ/3), where λ =
√

�
√

3

2π
, (5.12)

�(v, τ) = 1

i

+∞∑
n=−∞

(−1)neiπτ(n+1/2)2
e(2n+1)π iv, v ∈ C . (5.13)

Given the invariance properties of the Theta function on a lattice, |η| is periodic on
the lattice λZ + λe2iπ/3Z. It can be proved that all functions such that ηe�|z|2 is
holomorphic and whose modulus is periodic on a lattice are given by (5.12). A proof
that the triangular lattice, that is, τ = e2iπ/3 minimizes the ratio b = −

∫ |η|4/(−∫ |η|2)2

for such functions η can be found in [8].

Distorted lattice and inverted parabola

The main observation is that modifying the location of the vortices from a regular
lattice can change the decay of the wave function and hence improve the energy
estimate. This decay is similar to that of an inverted parabola, as already observed by
[49, 141, 154], and we are going to justify this observation.

If one considers the minimization of the energy (5.1) without the constraint (5.4),
one finds that Na|ψ |2 is equal to the positive part of µ − (1 − �2)|z|2/2, where µ

is the Lagrange multiplier due to the constraint
∫ |ψ |2 = 1; |ψ | is thus the inverted

parabola

|ψmin(r)|2 = 2

π R2
0

(
1 − r2

R2
0

)
1r<R0 , R0 =

(
4Na

π(1 − �2)

)1/4

. (5.14)

The reduced energy is

εmin = ELLL(ψmin) ∼ 2
√

2

3

√
Na(1 − �)

π
. (5.15)

This is close to the upper bound (5.5); the numerical factor is the same except for
the coefficient b, coming from the averaged vortex contribution. But if ψ is of the
form (5.4), it cannot approximate (5.14) since ψmine�|z|2/2 is not a holomorphic



104 5 High-Velocity and Quantum Hall Regime

function. Nevertheless, as � tends to 1, with an appropriate location of the zeros
zi of the polynomial P , the aim is to build a test function that provides a weak-star
approximation of ψmin, and whose energy can be of the same order as (5.15) but with
a coefficient

√
b coming from the contribution of the lattice.

Ideas of the proofs

Let us now explain the main ideas of the proof developed in [4]. For the regular
lattice, we split log|ψR(z)| into vR(z) + wR(z) with

vR(z) =
∑

j∈l∩BR

log|z − j | − 1

V

∫
Q

log|z − y − j | dy, (5.16)

wR(z) = logAR − �
|z|2
2

+ 1

V

∑
j∈l∩BR

∫
Q

log|z − y − j | dy. (5.17)

At this stage, we have just added and subtracted the sum of the integrals. As R tends
to ∞, we prove that vR converges to a periodic series v and ewR to a Gaussian
with modified decay 1/σ 2. The computation of the energy uses the double-scale
convergence [19], which allows us to separate the integrals in v and the Gaussian
and get the contribution of b.

Let us be more precise about Theorem 5.1. We perform a general transformation
of the lattice in the following way: for j in �, a regular triangular lattice of unit cell
with volume V = π/�, we define the transformed lattice �′

R by

k ∈ �′
R if k = νR(| j |) j for j ∈ � ∩ BR . (5.18)

We assume that νR is close to 1 as � tends to 1, in the sense that

ν2
R(r) = 1 + f (r2/R2)

R2
+ O

(
1

R4

)
with R =

(
4Nab

π(1 − �2)

)1/4

, (5.19)

where f (x) is a continuous function, such that for some γ , f (γ ) = ∞ and∫ γ

0 f (s) ds = ∞. Note that we do not take as inverted parabola (5.14), but we
need to include the coefficient b in the radius.

We would like to apply the same proof as for the regular lattice, using vR and
wR for this distorted lattice. In contrast to the proof for the regular lattice, we cannot
study the two limits R → ∞ in (5.7) and σ → ∞ in (5.9) separately, since now R
is related to � through (5.19). Hence, the lattice has a finite extent at each R and we
have to pass to the limit in the double scale convergence at the same time as the scale
of the lattice. We are unable to match wR inside and outside the lattice and do the
dominated convergence separately.

In order to circumvent this problem, we introduce an outer regular lattice, whose
characteristic size tends to infinity in a last step. Let α ∈ (0, γ ), R be related to � by
(5.19), and
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λR(r) =
{

νR(r) if r ≤ αR,

να,R = νR(αR) if r > αR,
(5.20)

and �′
R = {λR(| j |) j : j ∈ �}. For fixed α, we let R tend to ∞, and study the limit

of the wave functions vanishing at each point of �′
R :

ψR(z) = AR

∏
j∈�

(z − λR(| j |) j) e−�
|z|2

2 . (5.21)

Since α is fixed, νR(αR) tends to 1. We use similar ideas as in the regular lattice
case and identify a double-scale convergence to a periodic part on the one hand and
a profile depending on the transformation f on the other hand, given by

|ψ(z)|2 = |η(z)|2
(

e−F(|z|2)1Bα (|z|) + eα2 f (α2)−F(α2)− f (α2)|z|2 1Bc
α
(|z|)

)
, (5.22)

where F is a primitive of f . The proof uses as a main tool that λR is close to the
identity. As a final step only, once we have passed to the limit � → 1, we let α tend
to γ , so that the exterior regular lattice has a unit-cell volume that tends to infinity
and the outer contribution disappears. We find an estimate for the energy:

ELLL(ψ�) ∼�→1

√
2Nab(1 − �)

π

∫ γ

0

(
se−F(s) + 1

4
e−2F(s)

)
ds, (5.23)

where F is a primitive of f such that
∫ γ

0 e−F(s) ds = 1.

We want to find which type of distortion f provides the optimal energy. The
minimizer of (5.23) under

∫ γ

0 e−F(s) ds = 1 is reached when

γ = 1 and e−F(r2) = 2(1 − r2). (5.24)

Thus, the decay of the wave function is asymptotically an inverted parabola. The
corresponding value of f is f (s) = 1/(1 − s). The limiting value of the energy
is (5.5).

Let us point out that the proof uses two lattices: an initial regular lattice and an
image lattice obtained by (5.18) and (5.19). The meaning of γ = 1 in (5.24) is that
the initial lattice is truncated in the ball BR : the points outside BR are sent to infinity.
There are two regions in the initial lattice: the points sufficiently far away from the
circle of radius R, for which νR is almost one, and the points close to the circle, at
distance less than

√
R, for instance. For the first category of points, the image lattice

is an almost regular lattice and the image points are inside the disk BR . These are
the visible points on the density profile. In contrast, the points close to the circle are
strongly modified by (5.19) and sent far away. This allows us to understand better
the distorted shape of Figure 1.7. It turns out that R is both the critical radius for the
initial lattice and the radius of the limiting inverted parabola (5.24).

For each R, this analysis gives an estimate of the number of necessary points
in the distorted lattice: it is the number of cells in a regular lattice of unit volume
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π included in a ball of radius R. Nevertheless, adding points in a far-away region
modifies the energy by lower-order terms. We will see in the next section that the
minimizer does not have a finite number of zeros but an infinite one.

One of our technical tools in the proof is to use an outer regular lattice whose
spacing tends to infinity in a last step. If one wanted to get rid of this trick, one would
need to count the number of points in the lattice closest to the limiting circle of radius
R and estimate the convergence of vR and wR due to the fact that these limiting points
do not lie on a circle but on the edges of hexagons. We are not able to prove that the
finite extension of the lattice (which becomes infinite with an outer regular lattice)
does not create a boundary contribution in the energy. These boundary effects seem
to be more important than we expected, and are related to known problems about
counting the number of points of a lattice in an annulus. Moreover, given the fact
that the minimizer has an infinite number of zeros, points are needed in the outer
region.

5.1.3 Properties of the minimizer

In order to derive properties of the minimizers of (5.1) in the space (5.4), we need
to write an equation satisfied by the minimizers. This requires the knowledge of the
projector onto our space of minimization. There is a natural Hilbert space related to
our minimization problem, the so called Fock–Bargmann space [8, 26, 65, 110]:

F =
{

f is holomorphic,
∫

R2
| f |2e−�|z|2 < ∞

}
. (5.25)

This space is a Hilbert space endowed with the scalar product 〈 f, g〉F =∫
R2 f (z)g(z)e−�|z|2 . The projection of a general function g(z, z̄) onto F is explicit:

�(g) = �

π

∫
R2

e�zz′
e−�|z′|2 g(z′, z̄′). (5.26)

If g is a holomorphic function, then an integration by parts yields �(g) = g. Using
this expression, we are able to derive an equation for the minimizer:

Theorem 5.3. There exists a minimizer of (5.1) with the constraint that f (z) =
ψ(z)e�|z|2/2 belongs to F . Moreover, f is a solution of the following equation:

�
(( (1 − �2)

2
|z|2 + Na| f |2e−�|z|2 − µ

)
f
)

= 0, (5.27)

where µ is the Lagrange multiplier coming from the L2 constraint.

The proof of this theorem will not be included here. It relies on a precise knowledge
of the compact embedding of some more regular spaces into F [44]. We refer to [9]
for the proof. The equation (5.27) allows us to derive that the minimizer cannot be a
polynomial:
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Theorem 5.4. If f ∈ F is such that ψ(z) = f (z)e−�|z|2/2 minimizes (5.1), and
(1 − �) is small, then f has an infinite number of zeros.

The proof relies on an explicit formulation of (5.27) and a contradiction argument on
the number of zeros if it is finite.

The tools introduced here can provide another proof of Theorem 5.1. Namely,
if η is the periodic function on the lattice introduced in (5.12) and p is the inverted
parabola

p(z) =
√

2

π R2

(
1 − |z|2

R2

)
1{|z|≤R}, R =

(
2Nab

π(1 − �)

)1/4

, (5.28)

then �(p(z)η(z))e−�|z|2/2 is an appropriate test function that reproduces the
same upper bound as (5.5) as proved in [9]. This test function is in fact close to
p(z)η(z)e−�|z|2/2. A number of open questions arise, in particular we would like to
prove that �(p(z)η(z))e−�|z|2/2 is a good approximation of the minimizer. This will
be described in the open problem section.

5.1.4 Other trapping potentials

Let us point out that other trapping potentials than r2 can be dealt with using these
techniques. In [7], we have addressed the case of r2 + kr4 with k small, following
recent experiments [40, 150]. According to the values of �, a giant vortex can be
obtained. This will be detailed in the last section.

The chapter is organized as follows: we prove Theorems 5.2 and 5.1 in the first
two sections, then Theorem 5.4 in Section 5.4. Finally, we address the issue of other
trapping potentials and describe some open questions.

5.2 Regular lattice

In this section, we prove Theorem 5.2. We first need two technical lemmas:

Lemma 5.5. Let � be a lattice, and denote by Q its unit cell centered at 0. Let Q R =⋃
k∈�∩BR

(Q + k) and for x in R2, let

h R(x) =
∫

Q R

(
log|x − x ′| − log|x ′|) dx ′.

Then there exist C > 0 and R0 > 0 such that

∀R ≥ R0, h R(x) ≤
(

π

2
+ C

R

)
|x |2.
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Proof: If Q R was a ball, then the integral could be computed explicitly. Thus, we use
a ball close to Q R and estimate the difference. We separate the integral defining h R

into two parts:

h R(x) =
∫

BR−a

(
log|x − x ′| − log|x ′|) dx ′ +

∫
Q R\BR−a

(
log|x − x ′| − log|x ′|) dx ′,

where a > 0 is independent of R and such that BR−a ⊂ Q R . The first term is the
radial solution of �u = 1BR−a such that u(0) = 0. One easily computes this solution:

u(x) = π

2
|x |21BR−a + π(R − a)2

(
1

2
+ log

( |x |
R − a

))
1Bc

R−a
.

Next, we consider the second term defining h R and use the inequality log(t) ≤ 1
2 (t2−

1), valid for any t > 0:

∫
Q R\BR−a

(
log|x − x ′| − log|x ′|) dx ′ ≤

∫
Q R\BR−a

1

2

(
|x − x ′|2

|x ′|2 − 1

)
dx ′

= |x |2
∫

Q R\BR−a

dx ′

2|x ′|2 ≤ C
|x |2
R

,

the constant C being independent of R and x . Collecting both results, we infer that

h R(x) ≤ π

2
|x |21BR−a (x) + π(R − a)2

(
1

2
+ log

( |x |
R − a

))
1Bc

R−a
(x) + C

R
|x |2

≤
(

π

2
+ C

R

)
|x |2,

using here again log(t) ≤ 1
2 (t2 − 1). This gives the result. �

Lemma 5.6. Let � be the hexagonal lattice, and let Q be its elementary unit cell (i.e.,
the regular hexagon centered at 0). Let

g(x) = log|x | − 1

|Q|
∫

Q
log|x − y| dy. (5.29)

Then we have, for some constant C > 0,

∀x ∈ Bc
1, |g(x)| ≤ C

|x |3 . (5.30)

Hence, the function

v(x) =
∑
j∈�

g(x − j) (5.31)

is such that ev(x) exists, is continuous on R
2, and is �-periodic.
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Proof: We first point out that g is continuous on R
2 \ {0}. Hence, we need to show

(5.30) only on Bc
a for some a > 0. We fix a > 0 such that Q ⊂ B a

2
. For any x ∈ Bc

a

and any y ∈ Q, we have |x−y|
|x | ≥ |x |− a

2
|x | ≥ 1

2 . Hence,

|x − y|2
|x |2 − 1 ≥ −3

4
.

For any t > − 3
4 , we have

t − t2

2
− |t |3 ≤ log(1 + t) ≤ t − t2

2
+ t3

3
.

Hence, writing g(x) = − 1
|Q|

∫
Q

1
2 log

(
1 − 2y·x

|x |2 + |y|2
|x |2

)
dy, we infer that

1

2|Q|
∫

Q

⎛
⎝−2y · x

|x |2 + |y|2
|x |2 − 1

2

(
−2y · x

|x |2 + |y|2
|x |2

)2

−
∣∣∣∣∣−2y · x

|x |2 + |y|2
|x |2

∣∣∣∣∣
3
⎞
⎠ dy≤−g(x)

≤ 1

2|Q|
∫

Q

⎛
⎝−2y · x

|x |2 + |y|2
|x |2 − 1

2

(
−2y · x

|x |2 + |y|2
|x |2

)2

+ 1

3

(
−2y · x

|x |2 + |y|2
|x |2

)3
⎞
⎠ dy.

Since Q is symmetric with respect to the origin,
∫

Q y · x dy = 0. In addi-
tion, Q is invariant under the rotation of angle π/3, so one easily shows that∫

Q

(|y|2 − 2(y · x)2
)

dy = 0. We thus have

1

2|Q|
∫

Q

⎛
⎝2y · x |y|2

|x |4 − |y|4
|x |4 −

∣∣∣∣∣−2y · x

|x |2 + |y|2
|x |2

∣∣∣∣∣
3
⎞
⎠ dy ≤ g(x)

≤ 1

2|Q|
∫

Q

⎛
⎝2y · x |y|2

|x |4 − |y|4
|x |4 + 1

3

(
−2y · x

|x |2 + |y|2
|x |2

)3
⎞
⎠ dy.

Using |y| ≤ a
2 , we end up with

|g(x)| ≤ 1

|Q|
∫

Q

⎛
⎝ |y|3

|x |3 + |y|4
2|x |4 + 1

2

∣∣∣∣∣2|y|
|x | + |y|2

|x |2
∣∣∣∣∣
3
⎞
⎠ dy ≤

a3

8 + a3

16 + 2a3

|x |3 .

This ensures that the series (5.31) converges normally on any set of the form(⋃
j∈� Bε( j)

)c
, which implies that v exists, is �-periodic, and is continuous on

R
2 \ �. Near a point k ∈ �, we write

ev(x) = |x − k|e− 1
|Q|

∫
Q log|x−y| dye

∑
j∈�\{k} g(x− j)

,

and the conclusion follows.
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Remark 5.7. It is in this lemma that we have used the symmetry properties of the
lattice. However, the same proof applies to a general lattice (which does not nec-
essarily have the above symmetries). In this case, one needs to use instead of
g = log| · | ∗ (δ0 − 1

|Q|1Q) the convolution of log| · | with a distribution g0 such

that
∑

k∈� g0(x − k) = ∑
k∈� δk − 1

|Q| , and such that the first harmonic moments of
g0 cancel. This is always possible (in such a case g0 is not supported inside Q).

Remark 5.8. The estimate (5.30) is valid for a fixed hexagonal lattice �0. Now, g =
g� depends on � in the following way: if � = λ�0, then g�(z) = g�0

( z
λ

)
. Hence,

|g�(z)| ≤ C0λ
3

|z|3 if |z| ≥ λ, for some constant C0 independent of �.

Proof of Theorem 5.2: Let fR(z) = log|ψR(z)|. We split fR into

fR(z) = vR(z) + wR(z) (5.32)

with

vR(z) =
∑

j∈l∩BR

log|z − j | − 1

V

∫
Q

log|z − y − j | dy, (5.33)

wR(z) = logAR − �
|z|2
2

+ 1

V

∑
j∈l∩BR

∫
Q

log|z − y − j | dy. (5.34)

Let v be given by (5.31). We have

vR(z) − v(z) =
∑

j∈�∩Bc
R

g(z − j).

Hence, if z ∈ BR , we deduce from Lemma 5.6 that

|vR(z) − v(z)| ≤
∑

j∈�∩Bc
R

C

|z − j |3

for some constant C independent of R and z. One can thus find a constant C inde-
pendent of R such that

∀A ∈ (0, R), ‖vR − v‖L∞(BR−A) ≤ C

A
. (5.35)

In addition, we have, for any z ∈ R2, denoting by jz the unique point of � such that
| jz − z| < 1,

vR(z) ≤ log|z − jz | + C +
∑

j∈�\{ jz}

C

|z − j |3 ≤ log|z − jz | + C,

for various constants C independent of z and R. Hence, evR is bounded in L∞(R2)

independently of R. Next, using the inequality |ea − eb| ≤ 1
2 (ea + eb)|a − b| and

(5.35), we infer that evR converges to ev in L∞
loc(R

2).
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Let us set w̃R(z) = wR(z)−wR(0)− log(AR)+ 1
2σ 2 |z|2. Applying Lemma 5.5,

we have

w̃R(z) ≤ −�
|z|2
2

+
(

π

2V
+ C

R

)
|z|2 + 1

2σ 2
|z|2 = C

R
|z|2. (5.36)

In addition, w̃R is a harmonic function in Q R = ⋃
j∈�∩BR

(Q + j) and vanishes at 0.
Hence, using the Harnack inequality, w̃R is bounded and we may extract convergence
of w̃R in L∞

loc(R
2) to some w̃, which is harmonic, nonpositive, and vanishes at 0.

Applying Liouville’s theorem, we find that w̃ = 0. Gathering all the previous results,
we thus have

|ψR(z)|
ARewR(0)

−→ ev(z)e−|z|2/(2σ 2) almost everywhere in R
2. (5.37)

For R large enough, (5.36) also implies

|ψR(z)|
ARewR(0)

≤ Ce
− |z|2

4σ2 . (5.38)

From (5.37) and (5.38), we apply the dominated convergence theorem and find that
as R tends to infinity,

|ψR |
ARewR(0)

−→ ev(z)e−|z|2/(2σ 2) in L p(R2), ∀p ≥ 1.

Using the fact that ‖ψR‖L2 = 1, we deduce that 1/(ARewR(0)) converges to the
appropriate constant, so that (5.7) holds.

Then we write the limiting energy, z being identified with a vector in R2:

ELLL(ψ) =
∫

R2

(
(1 − �2)

2
|z|2|η(z)|2e

− |z|2
σ2 + Na

2σ 2
|η(z)|4e

− 2|z|2
σ2

)
dz

πσ 2

=
∫

R2

(
(1 − �2)

2
σ 2|η(σξ)|2e−|ξ |2 + Na

2σ 2
|η(σξ)|4e−2|ξ |2

)
dξ.

The function η is periodic, so |η(σξ)|2 and |η(σξ)|4 respectively converge L∞-
weak-* to −

∫ |η|2 and −
∫ |η|4 (see [19]). Hence, we obtain (5.9).

5.3 Distorted lattice

In this section, we prove two theorems, that will imply Theorem 5.1. The first theo-
rem consists in studying a distorted lattice and finding the limit of the wave function
with an infinite number of vortices. The proof is similar to the regular lattice case,
since only the central vortices are displaced from their regular location. The sec-
ond theorem consists in letting � tend to 1 and using the double-scale convergence.
The proof is more involved since this is precisely where the distortion of the lattice
appears.
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Theorem 5.9. Let � be a hexagonal lattice, and let Q be the regular hexagon of area
π centered at zero. Let γ > 0 and let f be a positive Lipschitz continuous function
defined in [0, γ ) such that

lim
t→γ

f (t) = +∞ and lim
t→γ

∫ t

0
f (s)ds = ∞. (5.39)

Let us define

νR(t) = 1 + 1

2R2
f

(
t2

R2

)
+ O

(
1

R4

)
, (5.40)

where O
(

1
R4

)
is uniform with respect to t ∈ R+. Let α ∈ (0, γ ) and define

λR(t) =
{

νR(t) if t ≤ αR,

να,R = νR(αR) if t > αR.
(5.41)

For R′ > R, we define

ψR,R′(z) = AR,R′
∏

j∈�∩BR′
(z − λR(| j |) j) e−�

|z|2
2 , (5.42)

where AR,R′ is such that ‖ψR,R′ ‖L2(R2) = 1. Then, we have the following conver-
gence in L p(R2, (1 + |x |2)dx), for any p < +∞:

∣∣ψR,R′
∣∣ −→

R′→+∞
ARe

vR

(
z

να,R

)
+ wR(z) +

(
1

να,R
2

− �

) |z|2
2 , (5.43)

where

wR(z) =
∑

j∈�∩BαR

1

ν2
α,R |Q|

∫
να,R Q

log

( |z − y − νR(| j |) j |
|z − y − να,R j |

)
dy, (5.44)

and

vR(z) =
∑
j∈�

g

(
z − λR(| j |)

να,R
j

)
, (5.45)

the function g being defined by (5.29).

Then, we let � tend to 1, or equivalently R to infinity:

Theorem 5.10. With the same definitions as in Theorem 5.9, we have

∀n ≥ 1, envR(Rz) ∗
⇀

R→+∞
−
∫

env in L∞(R2), (5.46)
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e
2wR(Rz)+

(
1

λR (αR)2
−1

)
R2|z|2 −→

R→+∞
ρ(z) (5.47)

in L p(R2, (1 + |x |2)dx), ∀p ≥ 1, where, v is given by (5.31),

ρ(z) = e−F(|z|2)1Bα (|z|) + eα2 f (α2)−F(α2)− f (α2)|z|21Bc
α
(|z|), (5.48)

and F is a primitive of f such that −
∫

e2v
∫

ρ = 1.

Proof of Theorem 5.1: We let � tend to 1 and R be given by (5.19), and we take
a diagonal sequence in R′. Theorems 5.9, 5.10 and double-scale convergence [19]
provide the convergence of

∫ |ψR,R′(Rz)|2 to −
∫

e2v
∫

ρ, and similarly for the energy,
ELLL(ψR,R′(Rz)) is equivalent to√

2Nab(1 − �)

π

(
−
∫

e2v

∫ ∞

0
sρ(

√
s) ds + 1

4
−
∫

e4v

∫ ∞

0
ρ2(

√
s) ds

)
, (5.49)

where F is a primitive of f such that
∫ γ

0 e−F(s) ds = 1 and −
∫

e2v = 1. If one lets α

tend to γ , the contribution to ρ in the outer part Bc
γ vanishes and the energy is given

by (5.23).
We want to find which type of distortion f provides the optimal energy. The

minimizer of (5.23) under
∫ γ

0 e−F(s) ds = 1 is reached when

γ = 1 and e−F(r2) = 2(1 − r2). (5.50)

Thus, the decay of the wave function is asymptotically an inverted parabola. The
corresponding value of f is f (s) = 1/(1 − s). The limiting value of the energy
is (5.5).

Proof of Theorem 5.9: This proof is a mere adaptation of Section 5.2. Indeed, up to
normalization by a constant, the function log|ψR,R′ |2 is equal to

log
∣∣ψR,R′(x)

∣∣2 = 2
∑

j∈�∩BR′

(
log|x − λR(| j |) j | (5.51)

− 1

να,R
2|Q|

∫
να,R Q

log|x − y − λR(| j |) j |dy

)
(5.52)

+
∑

j∈�∩BR′

2

να,R
2|Q|

∫
να,R Q

log|x − y − λR(| j |) j |dy (5.53)

−|x |2. (5.54)

The sum (5.51)–(5.52) may be written

∑
j∈�∩BR′

g

(
x

να,R
− λR(| j |)

να,R
j

)
, (5.55)
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where g is defined by (5.29). Now, R being fixed, Lemma 5.6 ensures that the above

sum converges as R′ goes to infinity to vR

(
x

να,R

)
, where vR is defined by (5.45).

Moreover, the convergence of the exponential of (5.55) to e
vR

(
x

να,R

)
is the same as in

Theorem 5.2, that is, L∞
loc(R

2). Next, the sum (5.53) is equal to

∑
j∈�∩BR′

2

να,R
2|Q|

∫
να,R Q

log|x − y − λR(| j |) j |dy

=
∑

j∈�∩BαR

2

να,R
2|Q|

∫
να,R Q

log
|x − y − νR(| j |) j |
|x − y − να,R j | dy

+
∑

j∈�∩BR′

2

να,R
2|Q|

∫
να,R Q

log|x − y − να,R j |dy. (5.56)

The first sum in the left-hand side of (5.56) is wR(x), while the second sum is the
one appearing in (5.34), with να,R� replacing �. Since this lattice is also a hexagonal
one (with a different volume for its unit cell), the proof of its convergence applies,
using Lemma 5.5.

Proof of Theorem 5.10: For simplicity, we will give the proof in the case that the
O(1/R4) is zero. We start with the proof of (5.47). We define ε > 0 depending on R
such that, as R tends to infinity, {

Rε −→ +∞,

Rε2 −→ 0.
(5.57)

For instance, ε = R− 3
4 is a suitable choice. We write (recall that here z = x + iy and

dz denotes the Lebesgue measure dx dy)

wR(Rx) =
∑

k∈ �
R ∩Bα

R2

να,R
2|Q|

∫
να,R

R Q
log

( |x − z − νR(R|k|)k|
|x − z − να,Rk|

)
dz,

we split this sum into terms for which |k − x | < ε and terms for which |x − k| ≥ ε :
in the first case, we use the inequality

∀a, b > 0, |log a − log b| ≤ 1

2

(
1

a
+ 1

b

)
|b − a|

and the fact that |να,R − νR(|k|R)| ≤ C
R2 for some constant C independent of R and

x . Hence,∣∣∣∣∣
∑

|k−x |<ε

R2

να,R |Q|
∫

να,R
R Q

log

( |x − z − νR(R|k|)k|
|x − z − να,Rk|

)
dz

∣∣∣∣∣
≤

∑
|k−x |<ε

R2

2να,R |Q|
∫

να,R
R Q

(
1

|x − z − νR(R|k|)k|
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+ 1

|x − z − να,Rk|
)

|k||να,R − νR(|k|R)|dz

≤ C

R2

∑
|k−x |<ε

R2

2να,R |Q|
∫

B 3
R

dy

|y| ≤ C#

(
�

R
∩ Bε(x)

)
1

R
= C Rε2,

which tends to zero as R → +∞. Next, we deal with |k − x | ≥ ε, and denote the
corresponding sum by TR(x):

TR(x) =
∑

|k−x |≥ε

R2

να,R
2|Q|

∫
να,R

R Q
log

( |x − z − νR(R|k|)k|
|x − z − να,Rk|

)
dz.

Using the equality νR(R|k|) = 1 + f (|k|2)
2R2 , valid for any |k| ≤ α, we deduce that

TR(x) =
∑

|k−x |≥ε

R2

να,R
2|Q|

∫
να,R

R Q
log

⎛
⎝ |x − z − k − f (|k|2)

2R2 k|
|x − z − k − f (α2)

2R2 k|

⎞
⎠ dz.

We have |x − z − k| ≥ |x − k| − |z| ≥ ε − C
R = ε(1 − C

εR ) for z ∈ να,R
R Q, so that

for R large enough, we get |x − z − k| ≥ ε
2 . Hence, developing the quotient in the

logarithm, we get

TR(x) =
∑

|k−x |≥ε

R2

να,R
2|Q|

∫
να,R

R Q
log

⎛
⎝1 − f (|k|2)

R2|x−z−k|2 k · (x − z − k) + O
(

1
ε2 R4

)
1 − f (α2)

R2|x−z−k|2 k · (x − z − k) + O
(

1
ε2 R4

)
⎞
⎠dz,

where the O
(

1
ε2 R4

)
are uniform with respect to x and k. Developing the logarithm,

we thus obtain

TR(x) =
∑

|k−x |≥ε

(
R2

να,R
2|Q|

∫
να,R

R Q

f (α2) − f (|k|2)
R2

k · (x − z − k)

|x − z − k|2 dz

)
+ O

(
1

ε2 R2

)
.

Using the fact that f is smooth in [0, α], and recalling that the sum is a sum over the
set �

R ∩ Bα ∩ Bε(x)c, we find that it converges to the corresponding integral, namely

lim
R→+∞

TR(x) = 1

|Q|
∫

Bα

(
f (α2) − f (|y|2)

) y · (x − y)

|x − y|2 dy.

We then point out that x−y
|x−y|2 = −∇y log|x − y|, so that, integrating by parts, we have

lim
R→+∞

wR(Rx) = 1

|Q|
∫

Bα

div
(

f (α2) − f (|y|2)y
)

log|x − y|dy.

This limit is a radially symmetric function, which solves the partial differential equa-
tion �u = 2π

|Q|div
(

f (α2) − f (|y|2)y
)

in Bα , �u = 0 elsewhere. For any primitive
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F of f , the function 1
2

(
f (α2)|y|2 − F(|y|2)) 1Bα (y)+ 1

2

(
α2 f (α2) − F(α2)

)
1Bc

α
(y)

is such a solution, so we have (5.47) almost everywhere. In addition, the above proof

allows us to bound 2wR(Rx)+(1/(ν2
α,R)−1)R2|x |2 by C − f (α2)

4 |x |2 for some con-
stant C independent of R and x , which allows us to apply the dominated convergence
theorem.

We now prove (5.46). We fix n = 1, the general proof following exactly the
same pattern. It is sufficient to show that the following convergence holds for any
measurable bounded set D: ∫

D
evR(Rx) −→

R→+∞
|D|−

∫
ev. (5.58)

Hence, we are going to prove that for any a > 0,

∣∣∣evR(x) − ev(x)
∣∣∣ ≤ C

1 + √|x |
R

for |x | ≤ a R. (5.59)

This, together with the fact that ev(Rx) converges in L∞ weak-* to −
∫

ev (because ev

is continuous and periodic), will give (5.58). Let jx be the point of � that is the closest

to x . As R goes to infinity, |(λR(| jx |) − 1) jx | = O
(

1
R

)
uniformly with respect to x

since |x | ≤ a R. Hence, for R large enough, λR(| jx |) jx is the closest to x among all
λR(| j |) j, j ∈ �. Hence, for j ∈ � \ { jx }, we have, for some ε > 0,

∀y ∈ Q, |x − j − y| ≥ ε and |x − j − λR(| j |)( j + y)| ≥ ε. (5.60)

We then isolate jx in the sum defining vR , and write∣∣∣evR(x) − ev(x)
∣∣∣≤ ∣∣∣egR(x−λR(| jx |) jx ) − egR(x− jx )

∣∣∣ e
∑

j �= jx gR(x−λR(| j |) j) (5.61)

+ egR(x− jx )
∣∣∣e∑

j �= jx gR(x−λR(| j |) j) − e
∑

j �= jx gR(x− j)
∣∣∣ , (5.62)

where gR(z) = g
(

z
να,R

)
. We first bound (5.61). For this purpose, we point out that,

according to Lemma 5.6, one can find a constant Cε such that

∀z ∈ Bc
ε , |g(z)| ≤ Cε

|z|3 . (5.63)

Hence, the sum appearing in (5.61) may be bounded as follows:

∑
j �= jx

|gR(x − λR(| j |) j)| ≤
∑
j �= jx

Cενα,R
3

|x − λR(| j |) j |3 ,

which is bounded independently of R. Moreover, we have



5.4 Infinite number of zeros 117∣∣∣egR(x−λR(| jx |) jx ) − egR(x− jx )
∣∣∣ ≤ C ||x − λR(| jx |) jx | − |x − jx ||

+ C

∣∣∣∣
∫

Q

(
log

|x − y − jx |
|x − y − λR(| jx |) jx |

)
dy

∣∣∣∣
≤ C |(1 − λR(| jx |) jx |

+ C
∫

Q

(
1

|x − y − jx | + 1

|x − y − λR(| jx |) jx |
)

|1 − λR(| jx |)|| jx |dy

≤ C
|x |
R2

+ C
|x |
R2

∫
B3

dy

|y| ≤ C
|x |
R2

.

Hence, the left-hand side of (5.61) is bounded by C |x |
R2 . Next, we deal with (5.62).

Since g is bounded from above, it is sufficient to show the following:∣∣∣∣∣
∑
j �= jx

gR(x − λR(| j |) j) −
∑
j �= jx

gR(x − j)

∣∣∣∣∣ ≤ C
1 + √|x |

R
. (5.64)

In order to prove (5.64), we define A > 0 depending on R and x , to be fixed later on,
and distinguish in the above sum between terms for which | j − jx | ≤ A and those
for which | j − jx | > A. We have∑

0<| j− jx |≤A

|gR(x − λR(| j |) j) − gR(x − j)|

≤ ‖∇g‖L∞(Bc
ε )

∑
0<| j− jx |≤A

| j ||λR(| j |) − 1|

≤ C

R2

∑
0<| j− jx |≤A

| j | ≤ C

R2
A2(|x | + A).

We have used here the fact that g is Lipschitz continuous in Bc
ε . Considering the case

| j − jx | > A, we have, using (5.63),

∑
A>| j− jx |

|gR(x − λR(| j |) j) − gR(x − j)| ≤
∑

A>| j− jx |

C

|x − j |3 ≤ C

A
.

We thus may bound the left-hand side of (5.64) by C
A + C A2|x |

R2 + C A3

R2 . Choosing

A =
√

R

1+|x | 1
4
, we thus obtain (5.64), thereby concluding the proof of (5.59).

5.4 Infinite number of zeros

In this section, we prove Theorem 5.4.
1. The proof first requires another formulation of (5.27). The projector � has

many properties [110, 9]; in particular, one can check, using an integration by parts
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in the expression of �, that �(|z|2 f ) = (z/�)∂z f + f . As for the middle term in
the equation, one can compute that

�
(

e−�|z|2 | f |2 f
)

= �
(

e−�|z|2 | f |2
)

� f

= �( f (z))�(e−�|z|2 f 2) = f̄

(
1

�
∂z

)
�(e−�|z|2 f 2).

A simple change of variable yields

�
(

e−�|z|2 f 2
)

(z) = �

π

∫
e−�zz′−2�|z′|2 f 2(z′)d2r ′

= 1

2
�

(
f 2

(
.√
2

)) (
z√
2

)
= 1

2
f 2

( z

2

)
.

Thus, we obtain the following simplification of (5.27):

(1 − �2)z∂z f + Na f̄

(
1

�
∂z

)
[ f 2

( z

2

)
] − (2µ − 1 + �2) f = 0. (5.65)

2. Now we assume that f is a polynomial of degree n and a solution of
(5.65). We are going to show that there is a contradiction due to the term of
highest degree in the equation. Indeed, if f is a polynomial of degree n, then
(∂z)

k[ f 2(z/2)] is of degree 2n − k. But (5.65) implies that f̄ (∂z)[ f 2(z/2)] is of
degree n; hence f must be equal to czn . This is indeed a solution of (5.65) if
n(1−�2)+Na|c|2(2n)!/(22nn!�n)−2µ+1−�2 = 0. Using that

∫ | f |2e−�|z|2 = 1,
we find that |c|2π�−n+1n! = 1. The Stirling formula provides the existence of a
constant c0 such that

n(1 − �2) + c0 Na�

2π
√

n
≤ 2µ + 1 − �2.

For the minimizer, µ is bounded by twice the energy, thus by C
√

1 − �, so that if �

is close to 1, this implies that

2n
√

1 − � + c0 Na�

2π
√

n(1 − �)
≤ c1,

and no n can satisfy this last identity. The minimizer is not a polynomial.
3. If f is a holomorphic function with a finite number of zeros, then there ex-

ist a polynomial P(z) and a holomorphic function φ(z) such that f = Peφ . The
fact that f ∈ F provides a decreasing property on f [44], which implies that
Re (φ(z)) ≤ �|z|2/2. A classical result on holomorphic functions then yields that φ

is a polynomial of degree at most two, and f (z) = P(z)eα+βz+γ z2
with |γ | ≤ �/2.

A similar argument to that of case 2, but with more involved computations, provides
a contradiction with the degree of the polynomial P if � is close to 1. We conclude
that f has an infinite number of zeros. The detailed proof is given in [9].
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5.5 Other trapping potentials

In the previous sections, we have studied a harmonic confinement, which is the
case of most current experiments. The results of [7, 8] apply a more general trap-
ping potential, where in (5.2), (1 − �2)r2/2 is replaced by (1 − �2)r2/2 + W (r),
and perform a similar analysis. Then, the limiting distribution replacing the inverted
parabola should be

|ψ |2 =
(µ − (1 − �)r2 − W (r)

Nab

)
+
, (5.66)

where µ is such that
∫ |ψ |2 = 1. There are two necessary conditions for applying our

previous analysis: we need a small parameter (replacing 1−�) such that ELLL(ψ)−
� is small and the extent of the condensate (where |ψ |2 is non zero) is large. The first
condition is required so that the lowest Landau level is indeed a good approximation,
and the second to apply the double scale convergence.

In recent experiments [40, 150], W (r) = kr4/4. One can check that if � >

�c = 1 + √
�, where � = (3k2 Nab/8π)2/3, then the limiting distribution (5.66)

has its support in an annulus of inner and outer radii R± = 2(� − 1 ± √
�)/k. An

interesting regime to study is that of k small and � − 1 = αk2/3, with α such that
� > �c. Then the large scaling parameter replacing R is k−1/6, which is the order
of magnitude of R±. The vortex lattice is located in the annulus (R−, R+) and is
distorted towards the inner and outer edges, the inner disk corresponding to a giant
vortex.

This approach does not allow us to study the case when � is large and the annu-
lus gets thin [62], since in that case, we are no longer in the setting to apply double-
scale convergence: there are few circles of vortices in the condensate. At even larger
�, there is a phase transition in which the circle of vortices disappears into the giant
vortex.

5.6 Open questions

5.6.1 Lower bound and � convergence

Our results deal with an upper bound for the energy. A natural question is to get also
the lower bound and prove a � convergence result.

Open Problem 5.1 Prove that if ‖ψ‖L2 = 1, and ψe�|z|2/2 is a holomorphic func-
tion, then

lim inf
�→1

ELLL(ψ) ≥ 2
√

2

3

√
Nab

π
(1 − �). (5.67)

The present gap between the lower bound (5.15) and the upper bound (5.5) lies in
the coefficient b. We believe that an optimal lower bound should match the upper
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bound and that the limiting inverted parabola should have a radius given by (5.19)
instead of (5.14), that is, the optimal inverted parabola should have the coefficient
b: reproducing an inverted parabola profile in the space (5.4) requires many vortices
and thus creates a contribution in the energy through b. We have proved that the
minimizer has an infinite number of zeros, but getting that these zeros are located
on an almost regular lattice seems very difficult and is probably related to similar
difficulties in crystallization and sphere packing problems.

Several paths can be sought. One of them could be to look for a homogenization
expansion of the wave function. The main issue is the scale at which we expect the
convergence, since there are two scales in the problem, the one of the lattice (order
1) and the other of the inverted parabola. If we use the scale of the lattice, we expect
the following:

Open Problem 5.2 Assume that ψ� is a minimizer of (5.1) among functions ψ(z) =
f (z)e−�|z|2/2 such that f ∈ F . Fix a compact K and prove that in K , as � tends to
1, ψ� converges to η(z) given by (5.12).

If we rescale the problem on the inverted parabola profile we conjecture this:

Open Problem 5.3 Assume that ψ� is a minimizer of (5.1) among functions ψ(z) =
f (z)e−�|z|2/2 such that f ∈ F . Prove that as � tends to 1, if R is given by (5.28),
then ψ�(Rz) converges to η(z/R)p(Rz) in some weak sense, where η is given by
(5.12) and p by (5.28).

Another direction is to use the structure of the Fock–Bargmann space and the
calculus with pseudo-differential operators. For instance, one could hope to prove
that close to the test function �(p(z)η(z))e−�|z|2/2, there is a critical point of the
energy. This would require a precise study of the Hessian about this test function.

5.6.2 Restriction to the LLL

Another issue is to check that the lower bound of the energy restricted to the LLL
should provide the lower bound for the full energy (5.2) or that the reduction to the
LLL well describes the full minimization of the energy.

Open Problem 5.4 Prove that if ψ is a minimizer of (5.2) with ‖ψ‖L2 = 1, then ψ

and E(ψ)−� are respectively close to ψ� and ELLL(ψ�), where ψ� is a minimizer
of (5.1) among functions ψ(z) = f (z)e−�|z|2/2 such that f ∈ F .

More precisely, if ψ is a minimizer of (5.2), we can project it on the LLL and
its orthogonal through ψ = ψLLL + ψ⊥. The upper bound and the properties of the
operator (5.3) imply that ‖ψLLL‖L2 is close to 1 and ‖ψ⊥‖L2 is small like

√
1 − �.

This, and elliptic estimates, allow us [6] to prove that the energy of ψ decouples
into � + ELLL(ψLLL) plus a lower order term, and eventually that E(ψ) − � is of
the same order as ELLL(ψ�), where ψ� is a minimizer of (5.1) among functions
ψ(z) = f (z)e−�|z|2/2 such that f ∈ F . We do not know how to prove that ψ and
ψ� are close in L∞ norm, or equivalently that ψLLL and ψ� are close.
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5.6.3 Reduction to a two-dimensional problem

A related question is to prove that the reduction from a three-dimensional to a two-
dimensional problem is justified.

Open Problem 5.5 If � is close to 1 and ψ is a minimizer of the full three-
dimensional Gross–Pitaevskii energy

E3D(ψ) =
∫

R3

1

2
|∇ψ − i��� × rψ |2 + 1

2
(1 − �2)(x2

1 + x2
2)|ψ |2 (5.68)

+ 1

2
x2

3 |ψ |2 + 1

2
Ng|ψ |4,

with ‖ψ‖L2 = 1, then ψ is close to ψ2d(x1, x2)ξ(x3), where ξ is a Gaussian in the
x3 direction and ψ2d minimizes (5.2), with a = g

∫
R ξ4(x) dx.

Indeed in the fast rotation regime, the effective trapping frequencies in the x1
and x2 directions,

√
1 − �2 are much smaller when � tends to 1, than the frequency

in the x3 direction which is fixed, so that the wave function is expected to be on its
ground state in the x3 direction, which is a Gaussian. What we can prove for the
moment [6] is that the projection of a 3D minimizer onto higher excited states w.r.t.
the x3-variable is small and one can take the projection on the lowest excited state
ξ , as a test function for the 2D functional. From this we get E3D(ψ) = inf E(ψ) +
o(

√
1 − �), where E(ψ) is given by (5.2), with a = g

∫
R ξ4(x) dx . Recall that

E(ψ) = O(
√

1 − �). The fact that the wave functions are close is still open.

5.6.4 Mean field model

Studying the energy (5.2), known as the mean field quantum Hall regime, is accept-
able only if the number of vortices is much smaller than the number of atoms in the
condensate, which is the case of the present experiments. Otherwise, one has to con-
sider other models, as in [50, 148]. The reduction of the N -body Hamiltonian to the
Gross–Pitaevskii energy is an open question for this fast-rotating regime. It has been
derived only in the case of fixed rotation by Lieb and Seiringer [98].
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Three-Dimensional Rotating Condensate

In this chapter, we are interested in a three–dimensional rotating condensate, in a set-
ting similar to that of the experiments. In particular, we want to justify the observa-
tions of the bent vortices. Thus we want to study the shape of vortices in minimizers
of the following energy:

Eε(u) =
∫
D

{1

2
|∇u|2 − ���ε × r · (iu, ∇u) + 1

4ε2
(|u|2 − ρTF(r))2

}
dx dy dz,

(6.1)

where r = (x, y, z), ���ε is parallel to the z axis, ρTF(r) = ρ0 − (x2 + α2 y2 + β2z2),
D is the ellipsoid {ρTF > 0} = {x2 + α2 y2 + β2z2 < ρ0}, and ρ0 is determined by∫

D
ρTF(r) = 1, (6.2)

which yields ρ
5/2
0 = 15αβ/8π. If β is small, as in the experiments, this gives rise to

an elongated domain D along the z direction.
We intend to find an asymptotic expansion of the energy in terms of ε and de-

termine the critical velocity for the existence of a vortex. Our mathematical results
mainly deal with the single-vortex solution and are aimed at proving the bending
property. In this derivation, the vortex can be represented by an oriented curve, which
is a Lipschitz function γ : (0, 1) → D. We are going to prove that if the minimizer
has a single singularity line γ , then the energy decouples into a contribution from the
density profile ηε (which is the minimizer of Eε among vortex-free functions) and a
contribution from the vortex line γ , that is, as ε tends to 0,

Eε(uε) − Eε(ηε)

π |log ε| ∼ E[γ ], (6.3)

where

E[γ ] =
∫

γ

ρTF dl − �̄

∫
γ

ρ2
TF dz, with �̄ = �ε

(1 + α2)|log ε| . (6.4)
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The energy E[γ ] reflects the competition between the vortex energy due to its length
(first term) and the rotation term. Note that the rotation term is an oriented integral
(dz not dl, which comes from the product ���ε · dl), which tends to force the vortex
to be parallel to the z axis, while the other term wants to minimize the length. This is
why, according to the geometry of the trap, the shape of the vortex varies. The study
of the minimizer of E[γ ] will allow us to justify the bending property. This expansion
(6.3) is analogous to the case of a single vortex in a 2D condensate, except that now
the weight ρTF is integrated along the singularity line, instead of being evaluated at
the vortex point p. The main difference with the 2D analysis is that there is no such
lower bound as Proposition 3.10 to characterize the vortex tubes in terms of energy.
This is at the origin of the less-precise results in 3D.

In the first section, we will present numerical simulations illustrating the dif-
ferent patterns for vortices. Then, in the next section, we will explain the formal
asymptotic expansion for the energy, derived in [16]. In Section 3, we will describe
the � convergence results of R. Jerrard [85], which prove that the reduced energy
E[γ ] is indeed a � limit of (E(uε) − E(uε)/)/π |log ε|. This uses the splitting of
the energy into the energy of ηε and an energy of vε = uε/ηε. Vortices are identified
through the study of the Jacobians of vε, namely

Jv =
∑
j<k

vx j ∧ vxk . (6.5)

The convergence of Jacobians to a limiting current is proved and allows us to get
regularity on the limiting singularity line γ . Finally, in Section 4, we will study the
properties of the reduced energy E[γ ] and in particular get that the vortex line is
indeed bending. This is based on [14, 15].

The main results can be summarized in the following theorem, which character-
izes the critical velocity below which the minimizer is vortex-free:

Theorem 6.1. Let �̄ = limε→0 �ε/(1 + α2)|log ε| and

�̄1 = inf{�̄, ∃γ with E[γ ] < 0}.
Then 1 < �̄1ρ0 < 5/4. For �̄ < �̄1, the global minimizer uε is asymptotically
vortex-free in D, that is, the Jacobian of vε = uε/ηε tends to 0. For �̄ > �̄1, the min-
imizer has vortices. The straight vortex does not minimize the reduced energy E[γ ] if
β <

√
2/13.

6.1 Numerical simulations

In order to illustrate better our analytical results, we first present numerical sim-
ulations [10] of the different types of vortex patterns that we will study in the
next section. Numerical simulations of solutions of the full Gross–Pitaevskii equa-
tions have been performed by I. Danaila [10]. Critical points of the original energy
Eε(u) are computed by solving the imaginary time propagation of the corresponding
equation:
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(a) (b) (c)

Fig. 6.1. Single U -vortex configurations for ε�ε = 0.42 (a), 0.58 (b), 0.78 (c).

∂u

∂t
− 1

2
∇2u + i(��� × r).∇u = 1

2ε2
u(ρTF − |u|2), (6.6)

with u = 0 on ∂D. A hybrid three-step Runge–Kutta–Crank–Nicolson scheme is
used to march in time. Various initial data, with or without vortices, are taken.

Three different types of single-vortex configurations are observed, as shown in
Figure 1.5 in Chapter 1: planar U vortices, planar S vortices, and nonplanar S vor-
tices. The U vortices are the global minimizers of the energy. The S configurations
were observed experimentally recently [132] and are only local minimizers of the
energy.

As will be explained in our analytical approach below, the U vortex is a planar
vortex formed of two parts: the central part is almost a straight line that is very close
to the z axis, and the outer part reaches the boundary of the condensate perpendicu-
larly. When � increases, the central straight part gets longer, as illustrated in Figure
6.1. The U vortex lies either in the xz or yz plane. Starting with an initial condition
that is not in one of these planes yields a final state in the yz plane, which is the plane
closest to the z axis (we have taken α slightly bigger than 1). The U vortices exist
only for �ε bigger than a critical value �0. It is interesting to note that at �0, the
energy of the U vortex is bigger than the energy of the vortex-free solution; �0 is
very close to the angular velocity �1 for which the energy of the vortex-free solution
is equal to the energy of the U vortex, yet slightly smaller. The angular momentum
Lz = ∫

D ez × r · (iu, ∇u) of the U vortex for �ε = �0 does not go to 0. This sug-
gests that in fact there could be another U solution for �ε > �0. Using an ansatz,
another type of U solution is obtained in [113], which is a saddle point of the energy:
it is away from the axis and has lower angular momentum. We will discuss this issue
below.

Motivated by the experiments of [132], we compute critical points of the energy,
which are S configurations (see Figure 1.5). The planar S looks like a U , with the
half-part in the plane z < 0 rotated with respect to the z axis by 180 degrees. But
the analytical study will show us that the U vortex remains at finite distance (though
very small) from the axis, while the S vortex goes through the origin. The difference
in energy (and angular momentum) between U and S vortices is very small but S
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(a) (b) (c)

Fig. 6.2. Single S vortex configuration for ε�ε = 0.38 (a), 0.44 (b), 0.48 (c).

vortices are critical points of E[γ ] for any �, never minimizers of E[γ ]. As already
mentioned for the U vortex, stable planar S configurations lie either in the xz or yz
plane. The nonplanar S are such that the projections of the branches on the xy plane
are orthogonal, i.e., the rotation of the branches is of 90 degrees. We could check
that nonplanar S configurations with an angle between the branches different from
90 degrees do not exist. The S vortices exist for all values of �ε, while the U exist
only for �ε > �0. When �ε decreases, the extension of the S along the z axis goes
downwards, as shown in Figure 6.2, and the vortex tends to the horizontal axis. Note
that a vortex along the horizontal axis has Lz = 0, but a positive energy. On the other
side, when �ε increases, the S gets straighter and it tends to the vertical axis.

Numerical simulations in [10] also include the case of several vortices, which
we do not reproduce here.

6.2 Formal derivation of the reduced energy E[γ ]

Before presenting the rigorous � convergence result in the next section, we want to
indicate formally the origin of the terms in the expansion of the energy. The main re-
sult of this section is the exact decoupling of the energy Eε into three terms in (6.12):
a part coming from the profile of the solution without vortices, a vortex contribution,
and a term due to rotation. Then, each of these terms is formally evaluated in (6.21)
and (6.22), but this will be made rigorous the Section 3. The analysis described in
this section relies on [16].

6.2.1 The solution without vortices

Firstly, we are interested in the profile of solutions, so we will study solutions without
vortices. Thus we consider functions of the form η = f ei S , where f is real and does
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not vanish in the interior of D. We first minimize Eε over such functions. Then ηε is
a solution of

∇2ηε − 2i(��� × r).∇ηε + 1

2ε2
ηε(ρTF − |ηε|2) = 0. (6.7)

If the cross section is a disc, the phase is zero. When ε is small, since the ellipticity
of the cross section is small, the zero-order approximation of f 2

ε is ρTF. As for the
phase, when the cross section is not a disc, its behavior is given by the continuity
equation div ( f 2

ε (∇Sε − ��� × r)) = 0. This implies that there exists ���ε such that

f 2
ε (∇Sε − ��� × r) = � curl ���ε. (6.8)

One can think of���ε as the equivalent of a stream function in the case of fluid vortices.
Dividing (6.8) by f 2

ε and taking the curl, we find that ���ε is the solution of

curl

(
1

f 2
ε

curl ���ε

)
= −2 in D, ���ε = 0 on ∂D. (6.9)

When ε is small, the function ���ε is well approximated by the solution ��� of

curl

(
1

ρTF
curl ���

)
= −2 in D, ��� = 0 on ∂D. (6.10)

One can easily get that ���(x, y) = −ρ2
TF(x, y)/(2 + 2α2)ez . This exact expression

is due to the harmonic potential: any other trapping potential does not allow an exact
computation. Using (6.8), we can define S0, the limit of Sε, to be the solution of
ρTF(∇S0 − ��� × r) = � curl ��� with zero value at the origin. We have S0 = C�xy
with C = (α2 − 1)/(α2 + 1). We see that S0 vanishes when α = 1, that is, when
the cross section is a disc. The function ηε = fεei Sε that we have studied gives the
profile of any solution. It will allow us to compute the energy of all solutions.

6.2.2 Decoupling the energy

Let ηε = fεei Sε be the vortex-free minimizer of Eε discussed above. Let uε be a
configuration that minimizes Eε and let vε = uε/ηε. As in the previous chapter, we
use the trick introduced in [97] to decouple the energy: since ηε satisfies the Gross–
Pitaevskii equation (6.7), we multiply it by ηε(1 − |vε|2) to get∫

D
(|vε|2 − 1)(−1

2
� f 2

ε − 1

ε2
f 2
ε (ρTF − f 2

ε )

+ |∇ fεei Sε |2 − 2 f 2
ε (∇Sε · ���ε × r)) = 0. (6.11)

This leads to the following exact decoupling of the energy Eε(uε):

Eε(uε) = Eε(ηε) + Gηε (vε) + Iηε (vε), (6.12)

where
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Gηε (vε) =
∫
D

1

2
|ηε|2|∇vε|2 + |ηε|4

4ε2
(1 − |vε|2)2 (6.13)

is the energy of vortices and

Iηε (vε) =
∫
D

|ηε|2(∇Sε − ���ε × r) · (ivε, ∇vε) (6.14)

is the angular momentum of vortices. The first term Eε(ηε) is independent of the
solution uε, so we have to compute the next two and find for which configuration uε

the minimum is achieved. We use that at zero order |ηε|2 = f 2
ε is approximated by

ρTF when ε is small, so that we can approximate Gηε by G√
ρTF = Gε and Iηε by

I√ρTF = Iε.
Assuming that the solution uε has a vortex line along γ , that is, uε vanishes

along γ with a winding number equal to 1, our aim is to estimate the energy of uε

depending on γ . Our approximations rely on the fact that the ellipticity of the cross
section is weak and that ε is sufficiently small. We refer to [16] for details.

6.2.3 Estimate of Gε(vε)

We want to estimate

Gε(vε) =
∫
D

1

2
ρTF|∇vε|2 + ρ2

TF

4ε2
(1 − |vε|2)2.

The mathematical techniques to approximate Gε are similar to those used in the
previous chapter, inspired by [32] in dimension 2 and extended by [131] in dimen-
sion 3.

We define

Tλε = {x ∈ D s.t. dist(x, γ ) ≤ λε}, (6.15)

and assume that λε is small, λ being our matching parameter to be fixed later on.
Then we split Gε into two integrals: one in Tλε, the energy of the vortex core, and
the other in D \ Tλε, the energy away from the vortex core.

At each point γ (t) of γ , we define �−1(γ (t)) to be the plane orthogonal to γ at
γ (t). Since λε is small, we assume that ρTF is constant in �−1(γ (t)) ∩ Tλε and we
define the value ρt = ρTF(γ (t)). We want to compute

∫
Tλε

1

2
ρTF|∇vε|2 + ρ2

TF

4ε2
(1 − |vε|2)2

∼
∫

γ

ρt

2

∫
�−1(γ (t))∩Tλε

|∇vε|2 + ρt

2ε2
(1 − |vε|2)2.

This computation is valid as long as kλε is small, where k is the curvature of γ . The
zero-order approximation of vε is given by u1(r

√
ρt/ε), where u1(r, θ) = f1(r)eiθ

is the solution with a single zero at the origin of the cubic NLS equation
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�u + u(1 − |u|2) = 0 in R2.

Thus,∫
�−1(γ (t))∩Tλε

|∇vε|2 + ρt

2ε2
(1 − |vε|2)2

∼
∫

Bλε

∣∣∣∇(
f1(r

√
ρTF

ε2

)
eiθ

)∣∣∣2 + ρt

2ε2

(
1 − f 2

1

(
r

√
ρTF

ε2

))2

=
∫

Bλ
√

ρt

|∇u1|2 + 1

2
(1 − |u1|2)2

∼ c∗ + 2π log(λ
√

ρt ), (6.16)

where

c∗ =
∫

R2
f ′
1

2 + 1

2
(1 − f 2

1 )2 +
∫

R2\B1

f 2
1 − 1

r2
+

∫
B1

f 2
1

r2
.

The last line of (6.16) would be an equality if the first two integrals in the expression
of c∗ were taken in Bλ

√
ρt instead of R2. This approximation is correct if λ

√
ρt is

large (in fact bigger than 3 is enough).
The final estimate is

Gε(vε)|Tλε ∼
∫

γ

ρTF(
c∗
2

+ π log(λ
√

ρTF))dl. (6.17)

We are going to estimate Gε in D\Tλε. In this region |vε| ≈ 1, and we have seen
that λ

√
ρt is large, so that only the kinetic energy of the phase has a contribution:

∫
D\Tλε

1

2
ρTF|∇vε|2 + ρ2

TF

4ε2
(1 − |vε|2)2 ∼

∫
D\Tλε

1

2
ρTF|∇φε|2,

where φε is the phase of vε. We let ��� be a stream function that is div ��� = 0 and

curl ��� = ρTF∇φ.

Then ��� is the unique solution of

curl
( 1

ρTF
curl ���

)
= 2πδδδγ , ��� = 0 on ∂D, (6.18)

where δδδγ is the vectorial Dirac measure along γ . Thus,∫
D\Tλε

1

2
ρTF|∇φε|2 =

∫
D\Tλε

1

2ρTF
|curl ���|2 = −1

2

∫
∂Tλε

��� · ∇φε × ν,

where ν is the outward unit normal to the tube Tλε. We will see that ��� is almost
constant at a distance λε from γ and we call this value ���λε(γ ). Since the vortex line
has a winding number 2π ,
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D\Tλε

1

2
ρTF|∇φε|2 ∼ π

∫
γ

���λε(γ ) · dl.

We have to compute ��� on ∂Tλε. The computation is inspired by the paper of Svidzin-
sky and Fetter [152]. Let x0 ∈ γ . We set e3 = γ̇ (x0) and suppose (e1, e2, e3) to be
an orthogonal base in local coordinates. Then ��� has coordinates ψi in ei and the
variations of ψ3 are the only ones of influence in the equation for ���, since we want
to compute ��� · dl. Let ξ = ψ3/

√
ρT F . Then ξ satisfies

−�ξ + µξ = 2π
√

ρTFδδδγ ,

where

µ = √
ρTF�

1√
ρTF

= √
ρTF�⊥

1√
ρTF

.

Here �⊥ is the Laplacian in the plane perpendicular to e3 = γ̇ (x0). If the cross
section of the condensate D is a disc, one can compute µ. We denote by θ the angle
of e3, that is, e3 = cos θer +sin θez , and (r, z) are the coordinates of x0 in the original
frame. Then

µ = (1 + sin2 θ) + β2 cos2 θ

ρTF
+ 3(r sin θ − β2z cos θ)2

ρ2
TF

.

Note that µ > 0. We locally approximate the curve γ near the point x0 by the
parabola x = kz2/2, where k is the curvature of γ at x0. Note that in our approxima-
tions, we are only taking into account the shape of γ close to x0. The justification for
this relies on the fact that µ is large enough. We rewrite (6.2.3) in local coordinates
to get

−�
(

e
−kx1

2 ξ
)

+
((k

2

)2 + µ
)(

e
−kx1

2 ξ
)

= 2π
√

ρTF(x0)δe3 .

The solution of this equation is

√
ρTF(x0)K0

⎛
⎝

√
µ + k2

4
dist(x, γ )

⎞
⎠ ,

where K0 is a modified Bessel function. In particular, K0(x) ∼ −log(eC0 x/2) for
small x , where C0 ≈ 0.577 is the Euler constant. Hence, we deduce

���(x) ≈ −ρTFlog

⎛
⎝eC0

2

√
µ + k2

4
dist(x, γ )

⎞
⎠ γ̇ .

Thus we conclude by the estimate for Gε(vε) in D \ Tλε that

Gε(vε)|D\Tλε
∼ −π

∫
γ

ρTFlog

⎛
⎝eC0

2

√
µ + k2

4
λε

⎞
⎠ dl. (6.19)
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Here we have used that λε is sufficiently small. In the previous section, we
needed λ

√
ρt large. The existence of λ is justified by the fact that

√
ρTF/ε is much

bigger than 1, except very close to the boundary. But in this region, the contribution
of the energy is negligible.

We find that each vortex line γ provides a contribution

Gε(vε) ∼
∫

γ

ρTF

⎛
⎝c∗

2
+ π log

⎛
⎝ 2

εeC0

√
ρTF

µ + k2

4

⎞
⎠

⎞
⎠ dl, (6.20)

which can be approximated by

Gε(vε) ∼ π |log ε|
∫

γ

ρTF dl. (6.21)

6.2.4 Estimate of Iε(vε)

The estimate for Iε is very similar to that in the 2D case. Recall that the unique
solution of (6.9) satisfies ρTF(∇Sε − ��� × r) = � curl ���ε. Hence we integrate by
parts in the expression for Iηε (vε) to get

Iηε (vε) = �

∫
D

���ε · curl (ivε, ∇vε).

Let φε be the phase of vε. Since vε is tending to one everywhere except on the vortex
line, then (ivε, ∇vε) ∼ ∇φε; hence we can approximate curl (ivε, ∇vε) by 2πδδδγ .
We use the value of ��� and the fact that γ̇ (t) · ez = dz, to obtain

Iε(vε) ∼ − �π

(1 + α2)

∫
γ

ρ2
TF dz. (6.22)

6.2.5 Final estimate for the energy

We use (6.12), (6.21), and (6.22) to derive the energy of a solution with a vortex line.
The energy of any solution minus the energy of a solution without vortex is roughly
the vortex contribution in the sense (Eε(uε) − Eε(ηε))/|log ε| ∼ E[γ ], where E[γ ]
is given by (6.4).

Let us point out that Svidzinsky and Fetter [152] have studied the dynamics of a
vortex line depending on its curvature. For a vortex velocity equal to 0, the equation
obtained in [152] is the same as the equation corresponding to the minimum of our
approximate energy, though the formulation in [152] was not derived from energy
considerations. Following our work, Modugno et al. [113] have also derived an ap-
proximate expression for the energy. Note that the energy that we actually derive in
[16] is slightly more involved than (6.4). In the regime of the experiments, it is rea-
sonable to restrict to this expression (6.4), taking into account the fact that the vortex
core is sufficiently small (it is of size ε in our units) and neglecting the interaction of
the curve with itself.
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When there are several vortices, the energy has an extra term due to the repulsion
between the lines I (γi , γk):

Eε(uε) − Eε(ηε) ≈
∑

i

E[γi ] +
∑
i �=k

I (γi , γk), (6.23)

where

I (γi , γk) = π

∫
γi

ρTF log(dist(x, γk)) dl.

6.3 � convergence results

6.3.1 Main results

A rigorous mathematical derivation of E[γ ] using �-convergence has been per-
formed in [85]. The proof uses the splitting of the energy (6.12) and the definition
of vε = uε/ηε, where ηε is a minimizer over vortex-free solutions. Since uε and vε

have the same phase singularities and since |vε| ∼ 1, the asymptotic singularities of
vε can be understood by finding the limits of the Jacobian (6.5) of vε. This is used
to identify the limiting objects as currents and prove regularity results to deduce that
they are Lipschitz curves representing the vortex filaments.

The precise statement of the theorem requires the introduction of some notation
and tools. It is helpful to reformulate E[γ ] as a functional acting on currents: if γ is
a parameterized curve, one can define a current Tγ corresponding to the integration
along γ by

Tγ (φ) =
∫ 1

0
φi (γ (t))γ̇ i (t) dt, for φ = φi dxi ∈ C∞

c (D; �1R3), (6.24)

where �kRn denotes the space of k-covectors in Rn , with the basis {dxα1 ∧ · · · ∧
dxαk 1 ≤ α1 < · · · < αk ≤ n}. We define �kRn to be the space of k-vectors with
the basis {eα1 ∧· · ·∧ eαk 1 ≤ α1 < · · · < αk ≤ n}. The dual pairing between vectors
and covectors is denoted by 〈., .〉.

More generally, a k-dimensional current T on an open set U is a bounded linear
functional on the space of smooth k-forms with compact support in U . The bound-
ary of a k-dimensional current is the (k − 1)-dimensional current ∂T defined by
∂T (φ) = T (dφ). A current T is said to have locally finite mass in U ⊂ Rn if it can
be represented in the form

T (φ) =
∫

U
〈φ,

−→
T 〉 d‖T ‖ for φ ∈ C∞

c (U ; �kRn), (6.25)

where ‖T ‖ is a nonnegative Radon measure, locally finite in U , and
−→
T is a ‖T ‖

measurable function taking values in �kRn , normalized by |−→T | = 1 almost every-
where.
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Using these definitions for currents, we now point out that the functional E[γ ]
can be extended to 1-dimensional currents with locally finite mass such that

MρTF(T ) :=
∫

ρTF‖T ‖(dx) = sup

{
T (φ), φ ∈ C∞

c (D; �1R3),

∥∥∥∥ φ

ρTF

∥∥∥∥∞
≤ 1

}
(6.26)

is finite by

E[T ] =
∫

ρTF‖T ‖(dx) − �̄T (ρ2
TFdx3), (6.27)

where the first term is the weighted mass of the current. If γ is a parameterized
Lipschitz curve, if we compare (6.4), (6.24), (6.27), we indeed have E[γ ] = E[Tγ ].
The currents that we will consider will be rectifiable 1-dimensional currents with
locally finite mass. It is proved in [85] that they can be identified as a countable sum
of oriented Lipschitz curves γi , that is, T = ∑

i Tγi .
Recall that the definition of the Jacobian of an H1 function is given by (6.5). It

is convenient to associate with Jv a 1-current defined by

"Jv(φ) =
∫
D

φ ∧ Jv, φ ∈ C∞
c (D; �1R3). (6.28)

We are now going to state the main result, with notation close to that of Section 6.2.1.

Theorem 6.2 (R. Jerrard, [85]). Assume that �ε/(1 + α2)|log ε| tends to �, and
that uε is a sequence of minimizers of Eε. Let fε be the minimizer in H1(D; R) of

Fε( f ) =
∫
D

1

2
|∇ f |2 + 1

4ε2
(ρTF − f 2)2. (6.29)

Let

ηε = fεei�ε S0 with S0 = α2 − 1

α2 + 1
x1x2. (6.30)

Assume that Gηε (vε) ≤ C |log ε|, where vε = uε/ηε, and Gηε (vε) is defined by
(6.13). Then there exists a one-dimensional rectifiable integral current J with locally
finite mass such that as ε tends to 0,

(Eε(uε) − Eε(ηε))

|log ε| �-converges to E[J ], (6.31)

where E[J ] is defined by (6.27).

The precise statement of �-convergence will be given below in Theorem 6.5. The
study of minimizers of E[J ] allows us to get more properties of J , as we will see
in the next section. The detailed proof of this theorem is quite delicate and requires
a topological framework for the study of currents due to the degeneracy of ρTF near
∂D. We will try to explain the main ideas of the proof. A specific assumption that we
want to point out is that Gηε (vε) ≤ K |log ε|. This does not come from the a priori
estimates of the energy and implies in some sense that there is a bounded number of
vortices in D.
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Remark 6.3. The definition of ηε given by (6.30) is not the same as in the previous
section. Indeed, instead of writing Sε, we directly take the limit S0 in the phase. This
slightly complicates the computation of the splitting of the energy but avoids proving
convergence results for Sε. We have in particular the following property for S0:

ρTF(∇S0 − � × r) = −curl
( ρ2

TFez

2(1 + α2)

)
. (6.32)

Let us mention several consequences of this theorem:

Theorem 6.4 (R. Jerrard, [85]). Assume that �̄ < �̄1 defined in Theorem 6.1, and
let uε be a minimizer of Eε. Then for vε = uε/ηε, we have "Jvε → 0, as ε tends to
0, that is, uε is asymptotically vortex-free.

Another consequence of the � convergence properties proved in [85], which is
an application of the Kohn–Sternberg scheme [94], states that if γ0 is a local mini-
mizer of E[γ ], then there exists a local minimizer of Eε whose vorticity is close to
γ0, in the sense of the Jacobians of vε. The precise statement of this theorem [85] in-
volves the introduction of a topology on currents to define local minimizers of E[T ],
and in particular of seminorms, due to the degeneracy of ρTF close to the boundary.
In fact, we will see in the next section that the problem of minimizing E[T ] can be
reduced to a two-dimensional domain in the plane x = 0. There, the current can be
expressed in terms of a BV function.

The limiting energy E[J ] is either positive or unbounded below, depending on
the value of �̄: if γ minimizes E[γ ] then the curve γ taken k times has energy
k E[γ ]. But this does not reflect the finite ε behaviour. Indeed, the derivation of E[J ]
erases lower-order terms in ε, taking into account the interactions. These terms can
be neglected in studying suitable local minimizers. We refer to [85] for more details.
A more careful analysis of the interaction terms would be needed for a complete
analysis of the minimizers of Eε.

6.3.2 Main ideas in the proof

Here is a more refined version of what we will prove, which provides a detailed
formulation of the � convergence results. This requires a norm for the convergence
of currents:

‖T ‖ε := sup

{
T (φ), φ ∈ C∞

c (D; �1R3), s.t.

∥∥∥∥ φ

f 4
ε

∥∥∥∥
∞

+
∥∥∥∥∇φ

f 2
ε

∥∥∥∥
∞

≤ 1

}
, (6.33)

where fε is defined in Theorem 6.2. The exact statement of the following theorem
is given in [85] and requires the introduction of seminorms for currents, due to the
degeneracy of ρTF close to the boundary. We have chosen here to present a simplified
version of the result.

Theorem 6.5 (R. Jerrard, [85]). Assume that �ε/(1 + α2)|log ε| tends to �̄ as ε

tends to 0 and that
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1

|log ε|Gηε (vε) ≤ Cmε with 1 ≤ mε ≤ |log ε|, (6.34)

where we use the notation of Theorem 6.2. There exists ε0 such that for all ε < ε0,
there exists a current J̃εvε close to "Jvε such that

∂( J̃εvε) = 0, MρTF

(
J̃εvε

mε

)
≤ C, ‖ J̃εvε − "Jvε‖ε ≤ εδ (6.35)

for some δ. Moreover, "Jvε/mε is precompact as a sequence of distributions, and if
J is any limit of a convergent subsequence of "Jvε/mε, then MρTF(J ) is finite and

lim inf
ε→0

1

mε|log ε| (Eε(uε) − Eε(ηε)) ≥ E[J ]. (6.36)

In addition, if mε = 1, then (1/π)J is a 1-rectifiable locally finite current with no
boundary.

For any such J also satisfying that MρTF(J ) is finite, there exists a sequence of
functions uε such that "Jvε → J in the sense of currents and

lim
ε→0

1

|log ε| (Eε(uε) − Eε(ηε)) = E[J ]. (6.37)

The current J̃εvε is obtained from Jvε/mε by modifying it in two ways: Jvε is reg-
ularized by convolution with a smoothing kernel. This is necessary since Gηε (vε)

does not control Jvε in L1 but controls the smoothed current. Then the regularized
current is modified near the boundary since all estimates on the energy are for Gηε ,
and thus require lower bounds for fε, which are true only away from the bound-
ary. The properties proved for the current J̃εvε allow us to obtain properties for the
limit J .

Theorem 6.2 is stated with mε = 1 for simplicity. We will see that if mε =
|log ε|, then in fact (6.34) is no assumption, because it directly comes from the energy
estimates.

In the proof of Theorem 6.4, the difficulty is to get from the general estimate
mε = |log ε| that in fact mε = 1. The rest is a consequence of (6.36), which is a
negative quantity, and the definition of �̄1, which implies that J = 0.

We will now present the proof of Theorem 6.5. Let us write the proof for mε = 1
(mε = |log ε| is useful for Theorem 6.4).

Basic estimates and splitting the energy

Let us define the energy density

gε(u) = 1

2
|∇u|2 + 1

4ε2
(1 − |u|2)2. (6.38)



136 6 Three-Dimensional Rotating Condensate

Lemma 6.6. Let uε be a minimizer of Eε. Then

Eε(uε) ≤ C |log ε|,
∫
D

gε(uε) ≤ C |log ε|2. (6.39)

Proof: The first inequality comes from the construction of a test function, equal
to

√
ρTF in the bulk of the condensate and linear close to the boundary. We define

ξ(s) = γ (ρTF(s)), where

γ (s) =
{√

s, if s > ε2/3,
s

ε1/3 , if s < ε2/3.

Using the coarea formula, we obtain∫
D

|∇ξ |2 =
∫

γ ′(ρTF(r))2|∇ρTF|2 ≤ C
∫ ρ0

0
γ ′(s)2 ds ≤ C |log ε|.

For the other term,

∫
D

(ρTF − γ (ρTF)2)2 ≤
∫ ε2/3

0
(s − γ (s)2)2 ds ≤ Cε2.

Hence, the energy of this test function is bounded by |log ε|.
The second inequality follows from the Cauchy–Schwarz inequality:∣∣∣∣

∫
D

���ε × r · (iu, ∇u)

∣∣∣∣ ≤
∫
D

1

4
|∇uε|2 + C�2

ε |uε|2

≤ 1

2

∫
D

gε(uε) + C�2
ε(1 + ε2�2

ε). �� (6.40)

Lemma 6.7. The splitting of the energy holds:

Eε(uε) = Eε(ηε) + Gηε (vε) + I 1
ηε

(vε) + I 2
ηε

(vε), (6.41)

where Gηε (vε) is defined by (6.13) and

I 1
ηε

(vε) = �ε

∫
D

f 2
ε (∇S0 − ez × r)(ivε, ∇vε), (6.42)

I 2
ηε

(vε) = �2
ε

2

∫
D

f 2
ε (|vε|2 − 1)(|∇S0|2 − ez × r · ∇S0). (6.43)

The proof is the same as in the previous section. It consists in substituting uε =
ηεvε in the energy and multiplying the equation satisfied by fε by (|vε|2 − 1) to get
the result.

Lemma 6.8. Let fε be the minimizer of Fε. Then there exists a constant C such that

0 <
√

ρTF − fε < Cε1/6 ∀x ∈ D. (6.44)
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Proof: Since fε is a minimizer of Fε, it satisfies

−�( fε)
2 + 2|∇ fε|2 + 2

ε2
( f 2

ε − ρTF) fε = 0.

Since �ρTF < 0, we deduce that

�( f 2
ε − ρTF) >

2

ε2
( f 2

ε − ρTF) fε,

and the strong maximum principle implies that f 2
ε < ρTF in D. The second in-

equality is proved in [85] and relies on the Jensen inequality and the fact that fε is
superharmonic. ��

Jacobian estimates

In this section, we recall earlier estimates of [86] on Jacobians that show how the
energy density gε(vε) controls the Jacobian.

Lemma 6.9. There exist C, a such that for any open set U ⊂ R3 and v ∈ H1(U, R2),∫
U

∣∣∣φ ∧ Jv

∣∣∣ ≤ C
∫

U
|φ| gε(v)

|log ε|
+ Cεa(1 + ‖φ‖W 1,∞)

(
εa + ‖φ‖∞ +

∫
supp φ

(1 + |φ|)gε(v)
)

(6.45)

for all functions φ ∈ C0,1
c (U, �1R3).

This result is proved in [85] and is a refinement of earlier estimates of [86]. It ex-
presses how the Jacobian is controlled by the energy gε.

Another lemma, stated for this problem in [85], and whose results were first
proved in [86] for the case mε = 1 and in more generality in [137], is the following:

Lemma 6.10. Assume that K is a compact subset of D and vε ∈ H1(D, R2) a se-
quence of functions such that

1

|log ε|
∫

K
gε(vε) ≤ Cmε (6.46)

for some sequence of numbers mε such that 1 ≤ mε ≤ C |log ε|. Then "Jvε/mε is
precompact in the dual norm C0,α

c (K )∗ for every α > 0. If mε = 1, then (1/π)J is
1-rectifiable and without boundary in K. Moreover, if J is any limit of a subsequence
"Jvε/mε, then J has finite mass in K . If in addition, µ is a nonnegative measure
such that

gε(vε)

mε|log ε| dx → µ weakly in measure, then ‖J‖ � µ,
d‖J‖
dµ

≤ 1 a.e., (6.47)

where ‖J‖ denotes the total variation measure associated with J . For any
1-rectifiable current with no boundary and finite mass in D, there exists a sequence
of functions vε ∈ H1(D, R2) such that "Jvε → J in ∪α>0C0,α

c (K )∗ and
gε(vε)/π |log ε| dx converges to ‖J‖ weakly in measure as ε tends to 0.
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Construction of J̃εvε

Let b ∈ (0, 1/6), δ = εb and

Dδ = {x ∈ D s.t. ρTF(x) > ‖∇ρTF‖∞δ}. (6.48)

Lemma 6.8 implies that

1 − ρTF

f 2
ε

→ 0 in Dδ. (6.49)

We want to approximate Jvε/mε in order to be able to control it, by a mollified and
boundary regularized current J̃εvε.

Given φ ∈ C∞
c (D, �1R3), we claim that there exist functions φ1

ε , φ2
ε , φ3

ε with
φ = φ1

ε + φ2
ε + φ3

ε , and:

1. φ1
ε is supported in Dδ , φ "→ φ1

ε is linear, dφ1
ε = (dφ)1

ε , and

∥∥∥φ1
ε

f 2
ε

∥∥∥∞
+ εγ ‖∇φ1

ε‖∞ ≤ C
∥∥∥ φ

ρTF

∥∥∥∞
. (6.50)

2. φ2
ε and φ3

ε are error terms satisfying

ε−γ
∥∥∥φ2

ε

f 2
ε

∥∥∥∞
+ ‖∇φ2

ε‖∞ ≤ C
(∥∥∥ φ

f 4
ε

∥∥∥∞
+

∥∥∥∇φ

f 2
ε

∥∥∥∞

)
, (6.51)

∥∥∥dφ3
ε

f 2
ε

∥∥∥
L4

≤ Cεγ/4
(∥∥∥ φ

f 4
ε

∥∥∥∞
+

∥∥∥∇φ

f 2
ε

∥∥∥∞

)
. (6.52)

This claim is proved in [85]. The error term φ2
ε arises from mollification (convolution

by a smoothing kernel) and φ3
ε from boundary regularization. Then we define the

current J̃εvε by

J̃εvε(φ) := "Jvε(φ
1
ε ) ∀φ ∈ C∞

c (D, �1R3). (6.53)

In order to satisfy ∂( J̃εvε) = 0, the modification of the initial current near ∂D cannot
be carried out by simple multiplication by a cutoff function. The boundary regular-
ization in effect sends small vortices, which were near the boundary, away from the
condensate where they do not interact with the test function φ.

We want to check that (6.35) is satisfied. By the properties of φ1
ε and the fact

that ∂("Jvε) = 0, we deduce

∂ J̃εvε(φ) = J̃εvε(dφ) = "Jvε((dφ)1
ε) = "Jvε(dφ1

ε ) = ∂("Jvε)(φ
1
ε ) = 0

for all compactly supported 1-forms φ. In order to get the rest of (6.35), we are going
to prove that∣∣∣∫

D
ψ ∧ Jvε

mε

∣∣∣ ≤ C
∥∥∥ ψ

f 2
ε

∥∥∥∞
+ Cεγ (1 + ‖∇ψ‖∞)(1 + ‖∇ψ‖∞). (6.54)
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This implies (6.35), since for any smooth compactly supported 1-form φ with
‖φ/ρTF‖∞ ≤ 1, (6.54) and (6.50) imply that

∣∣∣ J̃εvε

mε

(φ)

∣∣∣ =
∣∣∣∫

D
φ1

ε ∧ Jvε

mε

∣∣∣ ≤ C,

which implies a uniform bound on MρTF( J̃εvε/mε) by the definition (6.26).
To prove (6.54), we define ε̄ = cε1−(γ /2), where c is chosen such that ε̄2 ≥

ε2/ f 2
ε in Dδ . This is possible thanks to (6.49). The choice of ε̄ implies that∫

Dδ

f 2
ε gε̄(vε) ≤ Gηε (vε). (6.55)

For ψ with compact support in Dδ , we deduce that∫
|ψ | gε̄(vε)

mε| log ε̄| ≤ C
∥∥∥ ψ

f 2
ε

∥∥∥∞

∫
Dδ

f 2
ε

gε̄(vε)

mε| log ε̄| ≤ C
∥∥∥ ψ

f 2
ε

∥∥∥∞
. (6.56)

We use (6.45) with ε replaced by ε̄ and (6.56) to get

∥∥∥∫
ψ ∧ Jvε

mε

∥∥∥ ≤ C
∥∥∥ ψ

f 2
ε

∥∥∥∞
+ Cεa(1−(γ /2))(1 + ‖∇ψ‖∞)ε−γ |log ε|(1 + ‖ψ‖∞).

(6.57)

If γ < a/4, this proves (6.54).
The proof of the convergence of currents relies on

∣∣∣ 1

mε

("Jvε − J̃εvε)(φ)

∣∣∣ =
∣∣∣∫ (φ2

ε + φ3
ε ) ∧ Jvε

mε

∣∣∣ ≤ C
(∥∥∥ φ

f 4
ε

∥∥∥∞
+

∥∥∥∇φ

f 2
ε

∥∥∥∞

)
.

The last estimate comes from (6.54) and (6.51) for the part related to φ2
ε . To control

the integral for φ3
ε , one needs an integration by parts to obtain that it is equal to(

1
2

)
| ∫ dφ3

ε∧(ivε, ∇vε)| and estimate it using (6.52), Holder’s inequality, and (6.39).

Compactness and properties of limiting currents

The second estimate of (6.35) implies, using a measure theory lemma, compactness
in some norm that we have not introduced here. This norm is stronger than ‖.‖ε, so
that the last inequality of (6.35) implies that "Jvε/mε is precompact as a sequence
of distributions.

We assume that J is the limit of a convergent subsequence, still denoted by
"Jvε/mε. It follows from (6.35), and the arguments just mentioned above, that
J̃εvε/mε converges to J in the sense of distributions, and in fact also in some lo-
cal norms. The first two properties of (6.35) are inherited by J . Additional properties
of J are a consequence of Lemma 6.10.
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Proof of (6.36)

We assume that "Jvε/|log ε| converges to J and use the splitting of the energy (6.41)
to get the lower bound. We have to prove that

lim inf
ε→0

1

mε|log ε|Gηε (vε) ≥
∫
D

ρTFd‖J‖, (6.58)

lim
ε→0

1

mε|log ε| I 1
ηε

(vε) = −�̄J (ρ2
TFdx3). (6.59)

For the last term in the energy splitting, we easily get

|I 2
ηε

(vε)| ≤ C�2
ε‖ f 2

ε (1 − |vε)
2‖2 ≤ Cε�2

ε(Gηε (vε))
1/2 ≤ Cε|log ε|3. (6.60)

Hence (6.36) follows from (6.58), (6.59), and (6.60).
The proof of (6.58) is performed on compact subsets K and thus uses a lower

bound for fε there and the convergence of the currents.
The proof of (6.59) relies on the equation (6.32) satisfied by S0. In order to

exploit this equation, we rewrite f 2
ε in I 1

ηε
as

χερTF + χε( f 2
ε − ρTF) + (1 − χε) f 2

ε , (6.61)

where χε is a smooth function such that

χε = 1 in D2δ and χε = 0 in Dδ, |∇χε| ≤ C

δ
,

and Dδ is given by (6.48).
The last two terms arising from (6.61) are easily estimated as small errors. After

using (6.32), integrating by parts, and estimating a small error term, one finds that
the main contribution to I 1

ηε
is

−1

1 + α2

∫
D

χερ
2
TFez · (ivε, ∇vε).

Since ‖χερ
2
TFdx3‖ε ≤ C , we can use the third estimate in (6.35) to replace Jvε by

J̃εvε. It is then not hard to conclude the proof using the second estimate of (6.35).
We refer to [85] for details.

The only point at which the proof fundamentally uses the assumption that the
trapping potential is harmonic is the estimate

‖χε���‖ε ≤ C for ��� = −ρ2
TF

2(1 + α2)
ez, (6.62)

at the end of the argument. For more general ρTF and corresponding stream functions
��� defined by (6.10), the argument works as soon as |���| ≤ Cρ2

TF near ∂D. Here, this
is immediate from the explicit form of ���. Other complications can arise, however,
if ρTF is such that D = {ρTF > 0} is not simply connected, or if ∇ρTF vanishes
near ∂D.
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Proof of (6.37)

We need to establish the existence of sequences for which the lower bound is
achieved when mε = 1. Let us give the proof in the case that J has finite mass,
the general case following by diagonalization arguments and considering the appro-
priate norms on currents (see [85]). If J has finite mass, one can apply Lemma 6.10,
and get that there is a sequence vε such that "Jvε → J and

1

|log ε|Gηε (vε) ≤
∫
D

ρTF
gε(vε)

|log ε| →
∫
D

ρTFd‖J‖.

We also have (6.59) and (6.60) and thus get

lim sup
ε→0

1

|log ε| (E(uε) − E(ηε)) = lim sup
ε→0

1

|log ε|Gηε (vε) + 1

|log ε| I 1
ηε

(vε) ≤ E[J ].

The opposite inequality has been proved in the previous step.

Proof of Theorem 6.4

Since Eε(uε) ≤ Eε(ηε), we derive from (6.41) that

Gηε (vε) ≤
∣∣∣I 1

ηε
(vε) + I 2

ηε
(vε)

∣∣∣. (6.63)

We deduce from the Cauchy–Schwarz inequality that

|I 1
ηε

(vε)| ≤
∫
D

1

4
f 2
ε |∇vε|2 + C�2

ε f 2
ε |vε|2 ≤ 1

2
Gηε (vε) + C�2

ε(1 + ε2�2
ε).

(6.64)

We get from (6.60), (6.63), and (6.64) that Gηε (vε) ≤ C |log ε|2, which matches the
hypotheses of Theorem 6.5 with mε = |log ε|. Thus there exists a current J such
that "Jvε/mε converges to J in the sense of distributions, and

E[J ] ≤ 1

mε|log ε| (Eε(uε) − Eε(ηε)).

Since �̄ < �̄1, this implies that J = 0. To finish the proof, we have to get that mε =
1. Let us assume that this is not the case, and define mε = max{1, Gηε (vε)/|log ε|}.
Thus

0 ≥ lim inf
1

mε|log ε| (Gηε (vε) + I 1
ηε

(vε) + I 2
ηε

(vε)) = 1.

The last inequality is a consequence of (6.59) and (6.60) since J = 0 and provides a
contradiction.
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6.4 Single Vortex line, study of E[γ ]

The previous section has allowed us to obtain as a � limit a reduced energy for rec-
tifiable 1-dimensional currents with locally finite mass. These currents, as explained
in [85], can be identified as a countable sum of oriented Lipschitz curves γi , that is,
T = ∑

i Tγi . We will see that the minimization of E[T ] can thus be reduced to a
planar problem for an oriented Lipschitz curve γ .

In this section, we will be more precise about the setting of minimization. Then
we will analyze the critical velocity �̄1 and the shape of minimizers, proving that
the straight vortex is not a local minimizer under certain conditions. Finally, we will
study various types of critical points of E[γ ].

The analysis described in this section relies on [14, 15]. We use the notation of
(6.4) and for an oriented curve γ such that γ (0) = γ (1) or γ (0), γ (1) ∈ ∂D,

E[γ ] =
∫ 1

0
ρTF(γ (s))|γ̇ | ds − �̄

∫ 1

0
ρ2

TF(γ (s))γ̇ · ez ds.

6.4.1 Setting of minimization of E[γ ]

Theorem 6.11. If α ≥ 1, then the energy E[γ ] is minimized when the vortex line γ

lies in the y z plane, that is, the plane closest to the axis.

Indeed, if we have a curve γ parameterized as γ (t) = (x(t), y(t), z(t)), then
we can define the new curve γ̃ (t) = (0, ỹ(t), z̃(t)) by z̃(t) = z(t) and ỹ(t) =
−

√
x2/α2 + y2. Then ρTF(γ (t)) = ρTF(γ̃ (t)). Since α ≥ 1, ˙̃y2 ≤ ẋ2 + ẏ2, we have

ρTF(γ̃ )| ˙̃γ | − �̄ρTF(γ̃ ) ˙̃z ≤ ρTF(γ )|γ̇ | − �̄ρTF(γ )ż. It follows that the energy of the
new curve E[γ̃ ] is less than or equal to E[γ ]. If α = 1, that is, the cross section
is a disc, then our arguments imply that the vortex line is planar, but of course all
transversal planes are equivalent. ��

If T = ∑
i Tγi is a minimizer, then by the previous theorem, all γi lie in the

same plane; hence the problem reduces to planar Lipschitz curves.
From now on, we will assume that the curve lies in the plane yz, so that x = 0,

and we denote by ρ the value of ρTF that depends only on y and z. In studying
minimizers it therefore suffices to consider vortices in the domain

D0 := {(y, z) : ρ(y, z) > 0}, ρ(y, z) = ρ0 − y2 − β2z2 for (y, z) ∈ D0. (6.65)

The variational problem in D0 can be rewritten by considering only vortices of
the form γ = ∂U , where U ⊂ D0 is a set of locally finite perimeter and ∂U is
oriented in the standard way, so that Stokes’ theorem holds. (Strictly speaking γ is
the reduced boundary ∂∗U , see [70].) If we write χ for the characteristic function of
such a set U , then

L[χ ] =
∫

∂U
ρ2dz =

∫
U

2ρρy dy dz = 2
∫
D0

χρρy and H [χ ] =
∫

ρ|∇χ |. (6.66)
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We therefore define A = {χ : D0 → {0, 1}, χ ∈ BVloc} and for χ ∈ A we write

E�[χ ] = H [χ ] − �L[χ ] =
∫
D0

ρ|∇χ | − 2�

∫
D0

χρρy .

Then E�[χ ] = E[γ ] when U = {(y, z) ∈ D0 : χ(y, z) = 1} and ∂U = γ . In the
rest of this chapter, we will write � instead of �; we restrict our attention to the yz
plane and study the problem of minimizing E� in A.

Proposition 6.12. (i) For every � ≥ 0, there exists a minimizer of E� in A. Any
minimizer is either the vortex-free state χ = 0, or has a vortex parallel to the z axis
(χ = 1 in y < 0) or is supported in the set {y < 0} and is bounded away from the z
axis.

(ii) For every � ≥ 0, there exists a minimizer of E� in {χ ∈ A : χ(y, z) �=
χ(−y, −z) a.e.}. For any such minimizer, the associated curve γ solves the Euler–
Lagrange equations for the line energy.

(iii) For every � such that A� := {χ ∈ A : L[χ ] = �} is nonempty, a minimum
h(�) of H [χ ] in A� is achieved.

Proof: (i) The existence of minimizers follows from standard facts about BV func-
tions: E�[χ ] is bounded below for χ in A, and taking a minimizing sequence, we
can pass to the limit and obtain convergence to a minimizer. In [85], it is shown that
any such minimizer can be identified with a local minimizer in a suitable sense of
E[T ].

Note that if γ = (y(t), z(t)) is a curve in D0 and if γ̃ = (−|y(t)|, z(t)), then
E�[γ ] = E�[γ̃ ]. So we may assume that y(t) ≤ 0 for all t for γ minimizing E . By
regularity, it follows that if y(t0) = 0 at some t0, then y′(t0) = 0. Then the Euler–
Lagrange equations imply that y(t) = 0 for all t , and hence that γ is the straight
vortex. If this does not hold, then regularity implies that γ is bounded away from the
z-axis.

Existence of minimizers in cases (ii) and (iii) follows by exactly the same argu-
ments, once one observes that the constraints are preserved by L1 convergence. In
case (ii), the curve γ associated with a minimizer χ must pass through the origin. It
is easily seen that γ solves the Euler–Lagange equations away from the origin, and at
the origin the Euler–Lagrange equations are satisfied if and only if the curvature van-
ishes, which must occur due to symmetry. Regularity follows from standard theory;
see for example [71]. ��

The minimization in (ii) gives rise to curves γ that pass through the origin and
are called S vortices. They are never global minimizers of E� but are observed ex-
perimentally [132]. They exist whatever the value of �, since the vortex-free solution
never satisfies the constraint. On the other hand, if � is small, there are no U vortices
that are critical points of the energy, as we will see below.

The shape of the U vortex and its preferred location in the yz plane can be
analyzed using the approximate energy E[γ ]. There also exist U -vortex solutions of
the Euler–Lagrange equation in the energetically less favorable xz plane, but there
are no critical point of the energy in any other plane. In fact, if γ is not in the xz or yz
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plane or is not planar, then one can construct small perturbations of γ that preserve
ρTF and lower the energy. This implies that γ cannot be a critical point of the energy
because the gradient is not zero. Of course, if the ellipticity of the cross section is
small, the gradient is small, which may allow us to observe these configurations. The
same reasoning holds for the upper or lower part of an S vortex, since they can be
matched at the origin.

The energy of the vortex-free solution is zero. Thus, a vortex line is energetically
favorable when �, β are such that infγ E[γ ] < 0. Recall that β determines the
elongation of the trap and is included in the expression of ρTF. We will see that there
exists a critical �̄ called �̄1, with 1 < �̄1ρ0 ≤ 5/4, such that for �̄ > �̄1, the
vortex-free state χ = 0 does not minimize E , and for β small enough, a straight line
parallel to the z axis is locally unstable. We want to estimate �̄1 and the curve γ

that minimizes E . Given the constrained minimization problem h(l), � can also be
viewed as a Lagrange multiplier and �̄1 can be defined as

�̄1 = inf
l

h(l)

l
. (6.67)

6.4.2 The bent vortex

Taking the straight vortex γs as a test function in E[γ ] allows us to compute the
critical angular velocity �̄s

1 for which a straight vortex has a lower energy than a
vortex-free solution, and we obtain �̄s

1ρ0 = 5/4.
For E to be negative, we need ρTF − �̄ρ2

TF to be negative somewhere, that is,
�̄ρ0 > 1. Hence

1 < �̄1ρ0 <
5

4
.

We are going to look at the stability and instability of the straight vortex and
prove that when the condensate has a cigar shape the first vortex is bent, while when
it is a pancake, the first vortex is straight and lies on the axis of rotation.

Let us investigate the existence of a bent vortex. Notice from the expression of
E that for E[γ ] to be negative, we need ρ − �ρ2 to be negative somewhere, that is,
�ρ > 1. For fixed �, we define the regions

Di := {(y, z) : �ρ(y, z) > 1}, Do := D0 \ Di . (6.68)

Fig. 6.3. Bent vortex.
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We will refer to these sets as “the inner region” Di and “the outer region” Do respec-
tively. In the outer region, the energy of a vortex per unit arc length is necessarily
positive, since ρ − �ρ2 > 0, whereas in the inner region, for appropriately oriented
vortices it can be negative since ρ − �ρ2 < 0. One can see easily that for γ to have
a negative energy, part of the vortex line has to lie in the inner region, that is, close to
the center of the cloud. Note that for Di to be nonempty, we need at least �ρ0 > 1.
We define γ i = γ ∩Di and γ o = γ ∩Do. We assume that γ (0) and γ (1) lie on ∂D.

In the region Di , we will see that the vortex is close to the axis for all β. On
the other hand, in the region Do, the vortex goes to the boundary along the quickest
path: if β is small, perpendicularly to the boundary, which gives rise to a bent vortex,
and if β > 1, the vortex stays parallel to the axis of rotation. In [14], we prove the
following:

Proposition 6.13. For all β and all �, in the inner region Di , the straight vortex
minimizes the energy restricted to Di , that is, E[γ i ], for γ i = γ ∩ Di .

Proposition 6.14. For β ≥ 1, in the outer region Do, the straight vortex minimizes
the energy restricted to Do, that is, E[γ o], for γ o = γ ∩ Do.

Note that in the outer region, Proposition 2 holds only for β > 1. If β < 1, the
situation is somewhat more complicated:

∫
γo

ρ dl is minimized by a path that joins

Di to ∂D along the y axis, whereas − ∫
γo

ρ2dz is minimized by the straight vortex
running along the z axis. The minimizer of the full energy reflects the competition
between these two terms, and hence is bent. In particular, as a corollary of the above
propositions we deduce the following:

Theorem 6.15. For β ≥ 1, E[γ ] ≥ inf(0, E[γs]), where γs is the straight vortex
parallel to the z axis. If E[γs] < 0, the equality can happen only if γ is the straight
vortex.

Note that for each z, there is a critical velocity �2d(z) for the existence of a vortex
in the two-dimensional section where z is constant. The region Di corresponds to
points z such that � > �2d(z). To prove Proposition 6.13, first note that∫

γi

ρdl − �ρ2dz ≥
∫

γi

ρ|dz| − �ρ2dz ≥
∫

γi

(ρ − �ρ2)dz. (6.69)

Since we have assumed that γ does not self-intersect, we can identify γ with the
(oriented) boundary of an open set V ⊂ D. Then γi can be identified with Di ∩∂V =
∂(Di ∩ V ) \ (∂Di ∩ V̄ ). Since ρ − �ρ2 = 0 precisely on ∂Di , this implies that∫

γi

(ρ − �ρ2)dz =
∫

∂(Di ∩V )

(ρ − �ρ2)dz. (6.70)

And by Stokes’ theorem,∫
∂(Di ∩V )

(ρ − �ρ2)dz =
∫
Di ∩V

(1 − 2�ρ)ρy dy dz. (6.71)
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The definition of Di implies that 1 − 2�ρ < 0, and so this integral is clearly mini-
mized if Di ∩ V is just the subset of Di where ρy > 0, so that∫

∂(Di ∩V )

(ρ − �ρ2)dz ≥
∫

{(y,z)∈Di :y<0}
(1 − 2�ρ)ρy dy dz. (6.72)

Again using Stokes’ theorem and the fact that ρ −�ρ2 vanishes on ∂Di , we find that
this is equal to ∫ z∗

−z∗

(
ρ(0, z) − �ρ2(0, z)

)
dz, (6.73)

where (0, ±z∗) are the points where the z axis intersects ∂Di . Combining these in-
equalities, we find that∫

γi

ρ dl − �ρ2 dz ≥
∫ z∗

−z∗

(
ρ(0, z) − �ρ2(0, z)

)
dz. (6.74)

It is easy to see that equality holds in (6.72), and hence in (6.74), exactly when γ is
the straight vortex, and so we have proved Proposition 6.13.

To prove Proposition 6.14, fix γ such that γ i is nonempty. The beginning and
end of γ must lie in the outer region, and γ intersects the inner region, so γ o must
consist of at least two components. Let (a1, b1) denote the first such component and
(a2, b2) denote the last, and write γ1 and γ2 to denote the corresponding portions of
γ o, so that γ1 is parameterized as γ1 = (y, z), (a1, b1) → Do, with γ1(a1) ∈ ∂D
and γ1(b1) ∈ ∂Di . We need to show that γ1 and γ2 both have more energy than
the corresponding parts of the straight vortex. We will consider only γ1 since the
argument for γ2 is exactly the same.

Define γs = (0, ζ ) to be a parameterization of the part of the straight vortex
joining (0, −zmax) to (0, −z∗), where zmax = √

ρ0/β:

ζ̃ (t) = − 1

β
(y(t)2 + β2z(t)2)1/2, ζ(t) = max

a≤s≤t
ζ̃ (s). (6.75)

Recall that we have γ1 = (y(t), z(t)). The definition is arranged so that t "→ ζ(t) is
nondecreasing and |γ̇s | = ζ̇ . To prove the proposition, it thus suffices to show that

ρ(γ1)|γ̇1| − �ρ2(γ1)ż ≥ ρ(γs)|γ̇s | − �ρ2(γs)ζ̇ . (6.76)

If ζ(t) > ζ̃ (t), this is clear, because then ζ̇ = 0, so the right-hand side van-
ishes, while the left-hand side is nonnegative, by the defining property of the outer
region Do.

And if ζ(t) = ζ̃ (t), then ρ(γ1(t)) = ρ(γs(t)), and so in this case 0 ≤ 1 −
�ρ(γ1(t)) = 1 − �ρ(γs(t)) ≤ 1. So we need to show only that

|γ̇ | − cż ≥ |γ̇s | − cζ̇ (6.77)
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for any c ∈ [0, 1]. We will apply (6.77) to c = �ρ(γs(t)).
To do this, first note that

ζ̇ = ˙̃
ζ = 1

ζ̃

(
y ẏ

β2
+ zż

)
= (ẏ, ż) ·

(
1

ζ̃
(

y

β2
, z)

)
.

So

|ζ̇ | ≤ |γ̇ |
(

1

ζ̃ 2
(

y2

β4
+ z2)

)1/2

= |γ̇ |
(

β−4 y2 + z2

β−2 y2 + z2

)1/2

.

Since β > 1, we conclude that |ζ̇ | ≤ |γ̇1|. Also, it is clear that |ż| ≤ |γ̇1|. So if
0 ≤ α ≤ 1, then

|γ̇1| − cż ≥ |γ̇1|(1 − c) ≥ ζ̇ (1 − c) = |γ̇s | − cζ̇ ,

which proves (6.77), and hence Proposition 6.14. We now investigate further on the
stability of the straight vortex. We parameterize the straight vortex as γs(z) = (0, z)
for −zmax < z < zmax, with zmax = √

ρ0/β.
We consider perturbations of the straight vortex of the form γδ(z) = (δv(z), z +

δ2w(z))+O(δ3) for |z| < zmax. We require that w be chosen such that ρ(γδ(±zmax)) =
0, thereby respecting the condition that the vortex line terminate at the boundary of
the cloud.

Writing a Taylor series expansion for E , one finds that

E[γδ] = E[γs] + δ2

2
(v, E ′′[γs]v) + O(δ3), (6.78)

where

(v, E ′′[γs]v) =
∫ zmax

−zmax

2(2�ρ − 1)v2 + ρv′2dz. (6.79)

To get this it is necessary to integrate by parts and use the fact that the straight vortex
solves the Euler–Lagrange equations for E . In particular, this eliminates all terms
involving w. No boundary terms arise from integration by parts because ρ(γδ) = 0
at the endpoints. In the case � = 0, this equation has been studied in [152].

We say that the straight vortex is stable if (v, E ′′[γs]v) > 0 for all v, and unstable
if (v, E ′′[γs]v) < 0 for some v.

Theorem 6.16. The straight vortex is stable if

�̄ρ0 >
3

4
+ 1

4β2
. (6.80)

The straight vortex is unstable if β < 1/
√

3 and

�̄ρ0 <
1

6
+ 1

6β2
. (6.81)
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Proof: To prove the instability of the straight vortex, we will find explicit pertur-
bations v for which (v, E ′′[γs]v) < 0. These also indicate the shape of good test
functions.

We define a perturbation v (depending on a parameter θ , which for now we
regard as fixed) by

v(z) =
{

0 if z ≤ θ zmax,(
z

zmax
− θ

)
(1 − θ)−1 if z ≥ θ zmax.

Here v is normalized so that v(zmax) = 1. For this choice of v, a lengthy but straight-
forward calculation shows that

(v, E ′′[γs]v) = 2�ρ
3/2
0

30β
[(1−θ)2(θ+4)− 5

�ρ0
(1−θ)−β2(1+ θ

2
)] =:

2�ρ
3/2
0

30β
�(θ).

It follows that the straight vortex is unstable if

(1 − θ)2(θ + 4) <
5

�ρ0

(
(1 − θ) − β2

(
1 + θ

2

))
(6.82)

for some θ ∈ [0, 1). It is helpful to write θ as θ = 1 − ηβ2 for some η > 0 to be
determined. Then (6.82) can be written in terms of η, as

�ρ0 < 5

(
1 + (β2/2) − (3/2η)

ηβ2(5 − ηβ2)

)
.

This is satisfied if

�ρ0 <
1 + (β2/2) − (3/2η)

ηβ2
= 1

2η
+ 1

ηβ2

(
1 − 3

2η

)
.

The maximum of the right-hand side is achieved for η close to 3, so we can take
η = 3 to find that (6.81) is a sufficient condition for instability. Because θ = 1 −
ηβ2 ≥ 0, this conclusion holds only if β ≤ 1/

√
3. For larger values of β, one can

make different choices of θ to find thresholds for instability.
To derive the sufficient condition for stability, note that for every z,

3ρ

2ρ0
− (zρ)′

2ρ0
= 1.

Multiplying v2 by the expression on the left and integrating by parts, we obtain

∫ zmax

−zmax

v2dz =
∫ zmax

−zmax

ρ

[
3v2

2ρ0
+ z

ρ0
vv′

]
dz.

Since |z|/ρ0 ≤ zmax/ρ0 = 1/β
√

ρ0 for |z| < zmax, we have
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−zmax

v2dz ≤
∫ zmax

−zmax

ρ

[
3

2ρ0
v2 + 1

β
√

ρ0

|v| |v′|
]

dz.

Now we use the inequality ab ≤ a2/2 + b2/2 to deduce∫ zmax

−zmax

v2dz ≤
∫ zmax

−zmax

ρ

[(
3

2ρ0
+ 1

2ρ0β2

)
v2 + 1

2
(v′)2

]
dz.

In particular, if

�ρ0 >
3

4
+ 1

4β2

then this implies that (v, E ′′[γs]v) > 0 for all v. ��
Note that the two values are consistent in the sense that they both scale like

1/β2 when β is small. For � large, one expects several vortices in the condensate,
but the fact that a straight vortex is stable gives an indication that for � large, each
vortex should be nearly straight, which is consistent with the observations [1]. Recall
that the stabilization of the cloud requires that the rotation be not stronger than the
trapping potential, which reads in our notation � < 1/ε.

Remark 6.17. It is interesting to see what happens in Theorem 6.16 when �̄ρ0 =
5/4, that is, when the straight vortex has zero energy. The first inequality yields that
if β > 1/

√
2, then the straight vortex is stable for all � such that �ρ0 > 5/4,

that is, when E[γs] < 0. If β > 1, we have seen that γs is not just stable but in
fact minimizes E . The second inequality implies that if β <

√
2/13 ≈ 0.39, then

the straight vortex is unstable at the velocity �̄ρ0 = 5/4 at which E[γs] = 0. As
a result, for these values of β, the first vortex to nucleate as �̄ increases is a bent
vortex. Note that it has been observed in [152] that for β < 1/2, the ground state
of the system exhibits a bent vortex. Numerical results of [68] also show that bent
vortices are energetically favorable when β is small.

Our results imply that under certain conditions there exists a nontrivial and non-
straight minimizing vortex. This minimizer is seen in experiments and is called a U
vortex.

In the case β < 1, that is, when the vortex line is bent, we will prove that the
vortex has a minimum length. This is related to the fact that the vortex has to go to
the center of the cloud and spend some time in the inner region.

For an open set U ⊂ D with Lipschitz boundary, we endow ∂U with an orien-
tation in the standard way, so that Stokes’ theorem holds.

We will deduce a lower bound on the vortex length from the following isoperi-
metric-type inequality:

Theorem 6.18. For every 0 < β ≤ 1,∣∣∣∣
∫

∂U
ρ2dz

∣∣∣∣ ≤ (2
√

ρ0)
1/2

(∫
∂U

ρ dl

)3/2

(6.83)

for every connected open subset U ⊂ D.
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Proof: 1. We use Stokes’ theorem to calculate∫
∂U

ρ2dz = 2
∫

U
ρρy dy dz ≤ 2

∫
U−

ρρy dy dz, (6.84)

where U− = {(y, z) ∈ U : y < 0}, since ρρy ≤ 0 for (y, z) ∈ D such that y ≥ 0.
So the coarea formula implies that∫

∂U
ρ2dz ≤ 2

∫
U−

ρ
|ρy |
|∇ρ| |∇ρ| dy dz

= 2
∫ ρ∗

ρ∗
s

(∫
{(y,z)∈U− : ρ(y,z)=s}

|ρy |
|∇ρ| dl

)
ds,

where ρ∗ = inf{ρ(y, z) : (y, z) ∈ U }, and ρ∗ = sup{ρ(y, z) : (y, z) ∈ U }. Thus∣∣∣∣
∫

∂U
ρ2dz

∣∣∣∣ ≤ |ρ∗ − ρ∗| sup
s

(
s
∫

{(y,z)∈U : ρ(y,z)=s}
ρy

|∇ρ| dl

)
.

Thus to prove the theorem it suffices to establish the following two claims:

s
∫

{(y,z)∈U : ρ(y,z)=s}
ρy

|∇ρ| dl ≤
∫

∂U
ρ dl (6.85)

for every s, and

|ρ∗ − ρ∗| ≤ (2
√

ρ0)
1/2

(∫
∂U

ρ dl

)1/2

. (6.86)

2. We first prove (6.85). Fix some s ∈ (ρ∗, ρ∗) and write �s to denote
{(y, z) ∈ U− : ρ(y, z) = s}. Also, let �̃s denote ∂U ∩ {ρ ≥ s}.

First assume for simplicity that �s is connected, so that it consists of the short
arc of the ellipse {ρ = s} joining two points, say p0 = (y0, z0) and p1 = (y1, z1)

with z0 < z1. We can represent �s as the image of the mapping

z "→ (y(z), z) =
(

−
(

s − β2z2
)1/2

, z

)
, z0 < z < z1.

Differentiating the identity ρ(y(z), z) = s we find that ρy y′(z) + ρz = 0. Thus

∣∣∣∣ d

dz
(y(z), z)

∣∣∣∣ =
(

1 + y′(z)2
)1/2 =

(
(ρ2

y + ρ2
z )

ρ2
y

)1/2

= |∇ρ|
|ρy | .

It follows that

s
∫

{(y,z)∈U : ρ(y,z)=s}
ρy

|∇ρ|dl = s
∫ z1

z0

dz.
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On the other hand, the one-dimensional measure of �̃s is certainly greater than
|p1 − p0| ≥ z1 − z0, and ρ ≥ s on �̃s , and so∫

�̃s

ρ(z, y)dl ≥ s l(�̃s) ≥ s(z2 − z1).

This proves (6.85) if �s is connected. If not, one can apply the same argument on
each connected component of �s .

3. Next we prove (6.86). Let q∗ and q∗ be points in ∂U such that ρ(q∗) = ρ∗,
ρ(q∗) = ρ∗. Since we have assumed that U is connected, ∂U contains a path joining
q∗ to q∗. In fact it contains two such paths. If we write P to denote the set of all
Lipschitz paths in D joining the level set {ρ = ρ∗} and the level set {ρ = ρ∗}, it
follows that ∫

∂U
ρ dl ≥ 2 inf

γ∈P

∫
γ

ρ dl.

Arguments in the proof of Proposition 6.14 show that for β ≤ 1, infγ∈P
∫
γ

ρ dl is
attained by a path that goes in a straight line along the y axis. Thus

inf
γ∈P

∫
γ

ρ dl =
∫ y∗

y∗
(ρ0 − y2) dy,

where y∗ = √
ρ0 − ρ∗, y∗ = √

ρ0 − ρ∗. And since y∗, y∗ ≤ √
ρ0,∫ y∗

y∗
(ρ0 − y2) dy ≥ 1

2
√

ρ0

∫ y∗

y∗
(ρ0 − y2)2y dy

= 1

2
√

ρ0

∫ ρ∗

ρ∗
ρ dρ

= 1

4
√

ρ0

(
(ρ∗)2 − (ρ∗)2

)
. (6.87)

Since b2 − a2 ≥ (b − a)2 when 0 < a < b, we deduce that (6.86) holds. ��
Remark 6.19. The exponent 3/2 is the best possible. An inequality similar to (6.83)
is valid for β > 1, but the proof needs to be modified a bit. For the straight radial
vortex, ∫

∂U
ρ2dz = 16

15

(ρ0)
5/2

β
and

∫
∂U

ρ dl = 4

3

(ρ0)
3/2

β
,

and so (∫
∂U

ρ2dz

) (∫
∂U

ρ dl

)−3/2

≈ 0.52 β1/2(ρ0)
1/4.

This shows that the constant (2
√

ρ0)
1/2 in (6.83) is fairly close to sharp for 1

4 ≤ β <

1, say.
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A short calculation starting from (6.83) shows that if E[γ ] < 0 then∫
γ

ρ dl >
1

(2�2√ρ0)
. (6.88)

We expect that even for a configuration with multiple vortices, each vortex line will
satisfy a lower bound of the type (6.88). In a configuration with several vortices γk ,
the energy derived in [16] is

∑
E[γk] + I (γk, γ j ), where

I (γk, γ j ) =
∫

γk

|log(dist(x, γ j )| dl.

Adding a vortex to a stable configuration with n − 1 vortices requires

E[γn] +
∑

I (γn, γ j ) < 0.

Since I > 0, this implies in particular that E[γn] < 0 and hence the bound on the
length.

6.4.3 Properties of critical points

As we have seen above, the minimizer is a U vortex, but it does not exist as a critical
point for all values of �:

Proposition 6.20. If �ρ0 < 1/2, there cannot exist a critical point of the energy that
lies in the yz half-plane y < 0.

Proof: Suppose that γ is a vortex, parameterized by γ (t) = (y(t), z(t)), where y, z
are smooth functions on an interval (a, b). We are going to construct a perturbation
along which the energy gradient has a sign when �ρ0 < 1/2. For s > 0 define
γs(t) = (y(t)s, z(t)), ys(t) = max

(
y(t) + s, −(ρ0 − β2z2(t))1/2

)
, and let I :=

{t ∈ (a, b) : ρ(γ (t)) > 0}. We compute

d

ds
E[γs]

∣∣
s=0 =

∫
t∈I

−2y(t)

(√
ẏ2 + ż2 − 2�ρ ż

)
dt.

If γ stays in y < 0 and �ρ0 < 1/2, this is always positive, and thus γs cannot be a
critical point of the energy. ��

Let us define

�̄0 = inf
l,l ′

h(l) − h(l ′)
l − l ′

. (6.89)

Then Theorem 6.18 implies that �̄0 < �̄1. It is proved in [85] that for � > �̄0, E�

has a local minimizer that is not straight only if β is small enough.
The following theorem explains a fact seen both in experiments and in numerical

simulations, where it is observed that as � increases, the area in the yz plane enclosed
by the vortex curve increases, so that the curves get closer to the z axis.
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Theorem 6.21. Fix �1 < �2, and for i = 1, 2, let χi minimize E�i in A, and let Ui

be the support of χi . Then U1 ⊂ U2.

Theorem 6.22. For almost every � ≥ 0, there is a unique minimizer of E� in A.

Our results require some preliminary definitions and lemmas.
Let �̄ := max{L[χ ] : χ ∈ A}. Let ∂h(�) denote the subgradient of h at �, where

h is defined in Proposition 6.12,

∂h(�) = {� > 0 : h(�′) ≥ h(�) + �(�′ − �) for all 0 ≤ �′ ≤ �̄},

and let hc denote the convex envelope of h on the interval [0, �̄], that is,

hc(�) = sup{u(�) : u ≤ h, u is convex on [0, �̄]}.

Finally, define $ = {� ∈ [0, �̄] : ∂h(�) is nonemepty} = {� ∈ [0, �̄] : h(�) =
hc(�))}. Note that � ∈ ∂h(�) if and only if � ∈ $ and � ∈ ∂hc(�). Theorem 6.16
implies that h is convex for � close to �̄ if β is sufficiently small, which ensures that
$ is nonempty. On the other hand, Theorem 6.18 shows that h(�) ≥ c�2/3. Thus we
expect that h is concave near � = 0.

Lemma 6.23. If χ ∈ A minimizes E� = H − �L, then H [χ ] = h(L[χ ]). Also,
L[χ ] ∈ $, and � ∈ ∂h(L[χ ]). Conversely, for any � ∈ $ and � ∈ ∂h(�), if χ ∈ A�

satisfies H [χ ] = h(�), then χ minimizes E� in A.

To prove the first assertions, fix χ minimizing E�, and let � = L[χ ]. For any χ̃

such that L(χ̃) = �, H [χ̃ ] = E�[χ̃ ] + �L[χ̃ ] ≥ E�[χ ] + �L[χ ] = H [χ ], which
proves that χ minimizes H in A�, i.e., that H [χ ] = h(�).

To prove that � ∈ $, fix any �′ �= � and find χ ′ such that L(χ ′) = �′, H(χ ′) =
h(�′). Then h(�′) − ��′ = H [χ ′] − �L[χ ′] = E�[χ ′] ≥ E�[χ ] = h(�) − ��.
Rearranging this gives h(�′) ≥ h(�) + �(�′ − �), and so � ∈ $ and � ∈ ∂h(�) as
claimed.

To prove the other assertions, fix � ∈ $ and χ ∈ A such that L[χ] = �, H [χ ] =
h(�), and fix � ∈ ∂h(�). For any χ ′ ∈ A, let �′ = L[χ ′]. Then E�[χ ′] = H [χ ′] −
��′ ≥ h(�′) − ��′ ≥ h(�) − �� = E�[χ ]. ��
Lemma 6.24. If χ1, χ2 ∈ A, then for χ∗ = χ1χ2 and χ∗ = χ1 + χ2 − χ1χ2,

L[χ1] + L[χ2] = L[χ∗] + L[χ∗], H [χ1] + H [χ2] ≥ H [χ∗] + H [χ∗].

Note that if χi is the characteristic functions of Ui for i = 1, 2, then χ∗ and χ∗
are the characteristic functions of U1 ∩ U2 and U1 ∪ U2 respectively.

The first conclusion is obvious. The second follows from noting that

|∇χ1| + |∇χ2| ≥ |∇(χ1 + χ2)| = |∇(χ∗ + χ∗)| = |∇χ∗| + |∇χ∗|

as measures. The last equality is a consequence of the fact that U∗ := supχ∗ is a
subset of U∗ := supp χ∗. Thus if ∂U∗ ∩ ∂U∗ is a set of positive one-dimensional
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measure, then their outer unit normals must be parallel (rather than antiparallel) along
this set. Hence there can be no cancellation. ��
Proof of Theorem 6.21: Fix �1 < �2 and let χi be a minimizer of E�i , i = 1, 2.
Let �i = L[χi ] for i = 1, 2. Define χ∗ and χ∗ as in Lemma 6.24 and let �∗ =
L[χ∗], �∗ = L[χ∗]. From Proposition 6.12 we know that minimizers are contained in
the region where the integrand in L is positive, and it follows that �∗ ≤ �1, �2 ≤ �∗.
Moreover, to prove the theorem it suffices to show that �∗ = �2, since this will prove
that χ2 = χ∗, or in other words, that U1 ∪ U2 = U2, for Ui = supp χi .

To do this, write h∗ := H [χ∗] and note that h∗ ≥ h(�∗) ≥ h1 + �1(�∗ − �1).

Similarly, h∗ = H(χ∗) ≥ h2 + �2(�
∗ − �2). Lemma 6.24 implies that h∗ + h∗ ≤

h1 +h2 and that �1(�
∗ −�1) = �1(�2 −�∗), and so by adding the two equations and

rearranging, we find that 0 ≥ (�2 −�1)(�
∗ − �2). Since �2 > �1 and �∗ ≥ �2, we

deduce that �∗ = �2 as required. ��
Proof of Theorem 6.22: First we claim that the set M := {� > 0 : � ∈ ∂h(�∗) ∩
∂h(�∗) for some �∗ < �∗} is at most countable. Indeed, if � ∈ M , then also � ∈
∂hc(�∗) ∩ ∂hc(�

∗). And because hc is convex, it follows that, in the interval �∗ <

� < �∗, hc is affine with slope �. Clearly, there can be at most countably many
values � with this property, proving the claim.

Now suppose that � is a value such that there are distinct minimizers χ1 �= χ2
of E�. Define χ∗ and χ∗ as in Lemma 6.24. In view of Lemma 6.24, E�[χ∗] +
E�[χ∗] ≤ E�[χ1] + E�[χ2], and so it follows that χ∗, χ∗ are also minimizers.
Because (by Proposition 6.12) χ1 and χ2 are supported in the set {y < 0}, the form
of ρ implies that �∗ := L(χ∗) < L(χ∗) =: �∗. Then Lemma 6.23 implies that �

belongs to the countable set M defined above. This proves uniqueness of minimizers
away from a set of measure zero. ��

For small l, we believe that there are minimizers of the constrained problem h(l)
that are not minimizers of E[χ ] and thus provide the existence of nonminimizing,
critical points of E� with U shape. For β small, given the isoperimetric inequality
from Theorem 6.18, which implies that h(�) ≥ c�2/3 near l = 0, the curve h(l)
should be concave in this region. On the other hand, if χ minimizes E�, then h(l) is
locally convex near L(χ). Thus the simplest possible behaviour that we expect for
the curve h(l) when β is small is to be concave close to l = 0 and then convex.

6.5 A few open questions

6.5.1 Small velocity

The result of Theorem 6.4 is only asymptotic and one would be interested in a finite
ε statement:

Open Problem 6.1 If �̄ < �̄1, prove that uε is vortex-free for small ε.
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(a) (b) (c) (d)

Fig. 6.4. a = −0.1, b = 1.1, β = 1/7. Side view of the condensate for � = 0.12 (a), 0.2 (b),
0.28 (c), 0.32 (d). Isosurface of lowest density.

6.5.2 Critical points of E�[χ ]

Open Problem 6.2 For fixed �, estimate the number and types of critical points of
E�[χ ]. In particular, study the problem h(l) for small l.

6.5.3 Finite number of vortices

An analysis as in the two-dimensional case where the interaction energy between vor-
tices is rigorously derived is not available at the moment for this three-dimensional
problem.

6.5.4 Other trapping potentials

Our arguments depend very little on the specific geometry of D0 and ρ, and with
small modifications would apply quite generally to families of isoperimetric-type
problems. On the other hand, the derivation and shape of the line energy strongly
rely on the special function ρ.

A natural open question is to consider the case of trapping potentials of the type
ar2+br4/16+β2z2. Numerical simulations in Figures 6.4, 6.5 illustrate the 3D shape
of vortices in this case. In Figure 6.5, in the xy plane, the condensate is an annulus
with vortices located on two concentric circles. The convexity of the bending differs
according to the two circles. We refer to [11] for more details.

6.5.5 Whole space problem

Open Problem 6.3 Prove the equivalent � convergence result of Theorem 6.2 when
the energy Eε defined in (6.1) is posed in R3 instead of D, and with the constraint
that ‖uε‖2 = 1. A natural question is the shape of vortex lines: are they closed curves
or do they go to infinity in the region of low density?
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Fig. 6.5. Vortex details for � = 0.48.

6.5.6 Decay of vortices

Numerical simulations of the time-dependent problem with Schrödinger dynamics
[102] show that the long-time behaviour of the solution is that of the correspond-
ing minimizer of the stationary problem in D. Though the Schrödinger dynamics
preserve the total energy, it turns out that the excess energy is eventually located in
waves in the low-density region.

Open Problem 6.4 Consider an initial solution of the time-dependent problem with
Schrödinger dynamics, which is either a U or S vortex, and analyze its decay when
the rotation � is equal to 0 or stopped slowly.

The decay of the U vortex is expected to be similar to what is displayed in Figure
6.1. The decay of the S vortex is more mysterious, since a horizontal S still carries
energy.



7

Superfluid Flow Around an Obstacle

In this chapter, we address another issue related to superfluidity: the existence of a
dissipationless flow induced by the motion of a macroscopic object in a superfluid.
The nucleation of vortices corresponds to the breakdown of this dissipationless phe-
nomenon.

A classical experiment on superfluid helium consists in flowing helium around
an obstacle. If the velocity c of the flow at infinity is sufficiently small, the flow is
stationary and dissipationless, as opposed to what happens in a normal fluid. On the
other hand, beyond a critical velocity, the flow becomes time-dependent and vortices
are emitted periodically from the north and south poles of the obstacle. Numerical
simulations illustrating this behaviour have been performed by Frisch, Pomeau, Rica
[67] and are displayed in Figure 7.1: a pair of vortices has been emitted and is flow-
ing behind the obstacle, while the next pair is being formed on the boundary of the
obstacle. In [67], the authors have also computed the critical velocity for nucleation
of vortices. Other related works, which we will describe below, include [78, 83]. The
absence of dissipation at low velocity can be explained by the existence of a station-
ary solution to some two-dimensional nonlinear Schrödinger equation, on which we
will focus. The superfluid velocity is given at any point in the flow by the gradient

Fig. 7.1. Numerical simulation of a superfluid flow around an obstacle: the velocity at infinity
is along the x axis and vortices are emitted. Courtesy of Y. Pomeau and S. Rica.
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Fig. 7.2. Stirring a laser in a condensate

of the phase of the wave function: if the wave function does not vanish, then the
velocity is well defined everywhere. The vortices are points where the wave function
vanishes and around which the circulation of the velocity is quantized.

Very recently, an experiment was conducted at MIT by Raman et al. [128] (see
also [117, 129]) in Bose–Einstein condensates, to study there the existence of a dis-
sipationless flow. Instead of a macroscopic object, the obstacle is a blue detuned
laser beam. The condensate is fixed and the obstacle is stirred in the condensate, as
illustrated in Figure 7.2. Similar features to those of helium are observed, namely
the evidence of a critical velocity for the onset of dissipation. The energy release is
measured as a function of the velocity of the stirrer: if the velocity is small, the flow
is almost dissipationless and the drag on the obstacle is very small, while above a
critical value of the velocity, the flow becomes dissipative. Numerical simulations
have been performed by [13, 83], relating the increase in energy dissipation to vortex
nucleation. The mathematical description of the experiments is quite involved, since
one has to take into account the three-dimensional geometry of the condensate and
the effect of the inhomogeneous potential trapping the atoms. Thus we will study a
model case, which still allows us to understand the main features of the experiments
and the geometry of the problem.

In the first section, we describe the mathematical framework. The next two sec-
tions will be devoted to the proofs of two specific results.

7.1 Mathematical setting

The first part will be devoted to a two-dimensional problem modelling helium, its
mathematical properties and open questions. In the following part, we will focus on
a simplified problem related to the experiment on BEC, where the inhomogeneity in
the density is at the origin of different behaviours.

7.1.1 Two-dimensional flow

The problem of a superfluid helium flow around an obstacle can be formulated as
follows: understand the properties of the solutions ψ of
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2i∂tψ + �ψ − 2ic∂xψ + (ρ0 − |ψ |2)ψ = 0, (7.1)

for x = (x, y) in ω = R2 \ B1, where B1 is a ball modelling the obstacle, and ψ = 0
on ∂ B1. Here c is the velocity of the flow at infinity (oriented along the x axis) and
ρ0 some fixed number. This equation is invariant under Galilean boost. Here, we
choose to work in the frame where the obstacle is fixed. We are going to prove that
the modulus of the solution tends to ρ0 as |x| goes to infinity, but we do not put
this as a hypothesis. If the flow is dissipationless, that is, for small c, we expect the
existence of a stationary stable solution of this equation, while if c is increased, the
flow becomes times dependent and vortices are nucleated.

Behaviour at small c

Our main result consists in a rigorous proof of the existence of stationary solutions
of (7.1) for small c, such that |ψ | does not vanish in ω, which implies that ψ does
not have vortices. This is based on [4] and will be proved in the next section:

Theorem 7.1. There exists c0 > 0 such that for all c ∈ (0, c0), the problem

�ψ − 2ic∂xψ + (1 − |ψ |2)ψ = 0 in ω = R2 \ B1, (7.2)

ψ = 0 on {r = 1}, (7.3)

has a vortex-free solution ψc, that is, |ψc| > 0 in ω.

Let us first explain the main steps and difficulties that arise in the proof. A natural
setting to prove the existence of solutions is to minimize the energy corresponding
to equation (7.2), namely

Ec(ψ, ω) = E0(ψ, ω) − cL̃(ψ, ω), (7.4)

where

E0(ψ, ω) =
∫

ω

1

2
|∇ψ |2 + 1

4
(1 − |ψ |2)2, (7.5)

L̃(ψ, ω) =
∫

ω

(iψ, ∂xψ). (7.6)

But it turns out that for ψ ∈ H1
loc(ω) such that E0(ψ) < +∞, the momentum term

L̃ is not well defined, and we believe that for the solution that we will construct
below, this term is not finite. Hence, we want to minimize Ec in bounded domains
ωR = ω ∩ BR and pass to the limit as R is large. As such, it is very difficult to find
good bounds on the solutions at finite R and pass to the limit. Thus we will need
to do a constrained minimization to get extra information on the solutions, and then
check that the constraint is not active. This will require a careful estimate of L̃ in
terms of E0, which is inspired by [71], where the existence of a solution of (7.2) in
the whole space R2 for small c is derived, but no analysis of the absence of vortices
is made.
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A first step is to study the solution ψ0 at c = 0, which is real-valued, radial, and
increasing. This solution is also unique in the class of functions with finite energy
E0. The uniqueness property is crucial for our existence result for c small. Indeed,
there are many solutions of (7.2)–(7.3) with c = 0 of the type f (r) exp(idθ), for
any integer d , but if d �= 0, then E0 is not finite. The uniqueness is obtained by a
Pohozaev identity, using an idea of Mironescu [112]: the idea consists in taking the
quotient of two solutions and to use the framework of the Pohozaev identity to derive
that the quotient of two solutions is in fact identically equal to 1, and thus provides
uniqueness.

The constraint that we prescribe on a possible solution ψc is that E0(ψc) −
E0(ψ0) be small. The a priori estimates rely on the fact that for c small, we expect
ψc/ψ0 to be close to 1. This allows us to pass to the limit in R and check that the
constraint is not active. This existence proof is not very far from an implicit function
theorem, though we have not found the right functional space in which to apply it.

We do not prove the stability of the solution that we construct, but only that it
is obtained as the limit of stable solutions (local minimizers of Ec) as R tends to
infinity.

Open Problem 7.1 For small c, the solution constructed in Theorem 7.1 is stable.

Behaviour at large c

A natural mathematical question is to study what happens when c is large. In [78],
a numerical study of the number of solutions of (7.2)–(7.3) is made as a function of
c: at low velocity, there are three stationary solutions, the one minimizing the en-
ergy, which is vortex-free, but also a one-vortex and a two-vortex solution. The three
branches meet at the critical value of c. For c larger than this critical velocity, there
are no solutions. The rigorous mathematical description of the branches is still open.
Beyond the critical velocity, the solutions of the time-dependent problem cannot be
stationary (or close to a stationary solution) and vortices are emitted periodically
from the obstacle, as illustrated in the numerical simulations of [67] and [78].

Open Problem 7.2 For c large, there are no solutions of (7.2)–(7.3).

This has been proved by Gravejat [73] when ω is replaced by R2, if one restricts
to finite energy solutions. The proof relies on a Fourier transform, and thus, it is
important to be in the whole space. His methods cannot be applied as such to our
case with the obstacle.

One could hope to prove that at least there are no stable solutions for c large.
Since vortices appear near the top and bottom of the obstacle, this gives an intuition
on where the instability is likely to take place. One could hope to argue by contra-
diction, assuming that there is a branch of stable solutions for all c and constructing
a specific direction (with vortices on the north and south poles) that could provide a
negative Hessian. This issue has been addressed formally in [149] and the computa-
tions there and in [52] could give hints towards a rigorous proof.
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For c large, we expect the time-dependent problem to give rise to solutions that
emit vortices from the north and south poles of the obstacle almost periodically, with
a period that decreases as c − ccrit is increased.

Open Problem 7.3 For large c, there exist solutions of (7.1) that are periodic in
time.

Other mathematical results related to this problem are concerned with travelling
wave solutions in R2 [36] or R3 [34]. In the whole space, the situation is very differ-
ent: there are vortex solutions, even at small speed. Here, at small speed, the presence
of the obstacle prevents the existence of stationary stable vortices.

Another issue is the decay of solutions at infinity. The solutions that we have
constructed in Theorem 7.1 have finite E0, and in fact we will prove that they tend
to 1. Gravejat [72, 74, 75] has obtained a more precise expansion of solutions in the
case of R2.

Hydrodynamic formulation

As mentioned above, this problem was first addressed by Frisch, Pomeau, and Rica
[67]. They have studied the case when the obstacle is a small disk of radius ε in the
frame where the obstacle is fixed. Thus, they make the change of variable t̃ = εt ,
x̃ = εx and the transformation ψ = √

ρei(φ+cx̃)/ε, which is now justified at small
velocity since we know that ψ does not vanish by Theorem 7.1. The equation can be
rewritten using the hydrodynamic formulation, which allows us to identify ∇φ with
a velocity:

⎧⎪⎨
⎪⎩

∂ρ

∂t
+ div (ρ∇φ) = 0,

∂φ

∂t
= ε2 �

√
ρ√

ρ
− ρ + ρ0 + c2 − |∇φ|2.

(7.7)

They look for stationary solutions and assume that the quantum pressure term
ε2�ρ/

√
ρ is negligible, which is a kind of long-wave approximation, and are led

to the following problem:

div (ρ∇φ) = 0, ρ = ρ0 + c2 − |∇φ|2, (7.8)

with boundary conditions ∂φ/∂n = 0 on ∂ B1, ρ → ρ0, and ∇φ → c at infinity. Note
that the second equation in (7.8) is a Bernoulli law for this problem. The system (7.8)
has the same mathematical formulation as that of a stationary irrotational flow of a
compressible fluid about an obstacle. The existence of solutions for such a related
subsonic problem (c small) and the nonexistence for c large were proved in [56, 146]
using a fixed-point theorem.

Open Problem 7.4 Prove rigorously the semiclassical limit: as ε tends to 0, if c is
sufficiently small, the stationary solutions of (7.7) converge to solutions of (7.8).
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Note that the system (7.8) is elliptic as long as

max |∇φ|2 <
1

3
(ρ0 + c2). (7.9)

The critical velocity for vortex nucleation corresponds to the value of c such that
the system turns from elliptic to hyperbolic. In [67], in analogy with the case when
the operator is the Laplacian, it is assumed that the maximum of |∇φ| is reached on
the north and south poles of the obstacle and the value is 2c. Then, this and (7.9)
yield c2

crit = ρ0/11, which is consistent with the numerical results. It is interesting
to notice that |∇φ| tends to c at infinity, but its maximum value is reached on the
boundary of the obstacle and is bigger than c. This is proved in [56], Chapter IV,
Theorem 8.

The nucleation of vortices has been addressed in [89] using an Euler–Tricomi
equation. The supersonic problems are much more involved. The rigorous study of
the vortex nucleation near ccrit seems a challenging issue.

Lin and Zhang [101] address the difficult issue of whether time dependent so-
lutions of (7.1) (or equivalently (7.7)) are close for small ε, to the solutions, with
the same initial data, of (7.7) with ε = 0 (also called the compressible Euler equa-
tion). They prove it whenever the latter has a classical solution in some time interval
[0, T ]. The size of such time interval will depend on the initial data and the value
of c. If the limiting equation (7.8) has a static solution (which is the case for small
c as explained above [56, 146]), then there is global existence in time for (7.7) with
ε = 0. An issue is to prove that this solution is vortex free for large time. For large
c, the effect of the quantum pressure term in the nucleation of vortices is probably
essential, and whatever the initial data, the solution of (7.1) should nucleate vortices.

7.1.2 Three-dimensional flow around a condensate

Experimental setup

In the MIT experiment [128, 117, 129], the condensate is cigar-shaped with the long
axis along the x direction. In nondimensionalized units, the radii of the condensate in
Figure 7.2 are Ry = Rz = 0.65 and Rx = 2.18. The stirring laser beam is modelled
by an obstacle that is a cylinder C of axis z and radius l = 0.19. It moves along
the x axis in the plane y = 0, as illustrated in Figure 7.2. In the actual experiment,
the stirring laser is moved backward and forward. For simplicity, we will work in
the frame in which the laser is stationary and assume that the condensate is flowing
around the laser, ignoring the rapid turnaround. In order to model the experiment,
one has to take into account the potential trapping the atoms, usually a harmonic
one, such as V (x, y, z) = λ2x2 + y2 + z2. It implies that the number ρ0 in (7.1)
has to be replaced by an inhomogeneous term: ρTF(x, y, z) = ρ0 − V (x, y, z), with
ρ0 = 0.42 in the experiment considered. The domain where ρTF > 0 is roughly the
location of the condensate, since when there is no obstacle, |ψ |2 ≈ ρTF. Outside the
obstacle, the analogue of equation (7.1) is satisfied, namely,
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2i∂tψ + �ψ − 2i ṽ∂xψ + 1

ε2
(ρTF − |ψ |2)ψ = 0,

where ṽ is the velocity of the stirrer and ε is a small parameter of order 10−3. More
precisely, ε = (d/(8π Na))2/5, where d is the characteristic length of the harmonic
potential, a the scattering length, and N the number of atoms in the condensate. We
refer to [13] for more details.

There are two interesting regions of space: one is close to the center of the con-
densate x = y = z = 0, where ρTF(x, y, z) is bounded from below, and in any
section where z is constant, the problem is similar to the 2D problem treated in the
previous section; another interesting region is where the laser beam passes through
the boundary of the condensate. This latter region can be analyzed by blowing up
the boundary layer close to the obstacle, so that ρTF depends only on z [13]. The
allowed domain is approximated as unbounded in the xy plane. In order to have
two terms of the same order in the equation (the kinetic term �ψ and the poten-
tial one (ρTF − |ψ |2)ψ), this boundary layer must have a thickness of order ε2/3,
so that we rescale the domain with ψ(x̃, ỹ, z̃) = ε1/3u(x, y, z), where x = x̃/ε2/3,
y = ỹ/ε2/3, and z = (

√
ρ0 − z̃)/ε2/3, v = ṽε2/3. The obstacle is now a cylinder of

radius a = l/ε2/3 = 5.6. In the frame of the obstacle, the equation becomes

2i∂t u + �u − 2iv∂x u + (2z
√

ρ0 − |u|2)u = 0, x, y ∈ R2 \ C, z ∈ (0, L),

(7.10)

where L is the rescaled layer thickness. It involves a dependence in z in the potential
term. The boundary conditions are

u = 0 on ∂C ∪ {z = 0}, u = u2D on {z = L}, (7.11)

where u2D is the solution of (7.1) with ρ0 replaced by 2
√

ρ0L . Far away from the
obstacle, that is, for |x | and |y| large, we do not expect the solution to be almost con-
stant as in the 2D case, but to be given by the solution of the first Painlevé equation

p′′ + (2z
√

ρ0 − p2)p = 0, p(0) = 0, p(L) =
√

2
√

ρ0L. (7.12)

The main difference with the 2D case is the dependence in z and the fact that z
vanishes close to the boundary of the obstacle (z = 0). Our aim is to understand the
structure of solutions of (7.10)–(7.11).

If one applies the computation of the critical velocity for the existence of a sta-
tionary solution of [67] to problem (7.10), one finds that the critical velocity is locally
proportional to

√
z and thus is zero, since z vanishes near the boundary. Hence vor-

tices should appear close to the boundary for any small speed. However, experiments
show the existence of dissipationless flows for small speed, and the numerical results
in [13] indicate that for low velocity, there exists a stationary solution without vor-
tices, while beyond some positive critical velocity, all solutions are nonstationary and
vortices are nucleated close to {z = 0}.
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Numerical results

In [13], we choose the size of the boundary layer L so that ε2/3L = 3
√

ρ0/10. This
is based on the consideration that, on the one hand, ε2/3L should be suitably small
so that 2z

√
ρ0 is a good approximation for ρTF = ρ0 − z̃2 in the boundary layer, and

on the other hand, the critical velocity at z = L is not too different from the critical
velocity at the center of the cloud. Let us point out that the choice of the box size in
z is rather arbitrary and one could imagine posing the problem for z ∈ (−∞, ∞).

When v is small, we find that the solution of (7.10)–(7.11) has surface oscilla-
tions near z = 0 but no vortices, even very close to the boundary, as illustrated in
Figure 7.3. We will prove the existence of stationary solutions for v small. Formal

Fig. 7.3. Isosurface snapshot of |u| for v = 0.08 and v = 0.2. Here z = 0 is the boundary of
the cloud, and z > 0 inside the cloud.

computations allow us to understand the patterns of solutions: close to z = 0, it is
reasonable to look for u with the ansatz

u(x, y, z) = p(z)ψ(x, y)eivx . (7.13)

We can approximate p(z) in this region by an Airy function given by the solution of
p′′ + 2zp

√
ρ0 = 0. Then, outside the obstacle, ψ is a solution of the 2D Helmholtz

equation �ψ + v2ψ = 0 with ψ = 0 on the boundary of the disc, and ψ ≈ e−ivx

at infinity. This solution can be computed [114] in terms of Bessel functions Jk and
Nk : it oscillates in space but has no vortices. These solutions are quite close to those
computed close to z = 0. It is an open question to study the loss of stability close to
z = 0. When v is increased, the surface oscillations develop into small handles that
move up and down the obstacle without detaching, as illustrated in Figure 7.4 (the
solution is periodic in time). There is no stationary solution, but no vortex shedding
either: the small handles move up the obstacle to a critical z value and down. This

Fig. 7.4. Isosurface snapshots of |u| at t = 0.12 and t = 0.16 respectively for v = 0.24:
formation of vortex handles.
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(a) (b)

(c) (d)

Fig. 7.5. A sequence of isosurface snapshots of |u| for v = 0.28: (a) formation of vortex
handles t = 0.04, (b) detachment from obstacle t = 0.08, (c) bending of vortex tubes t = 0.12
and (d) formation of vortex half-rings t = 0.16.

instability may be related to the one discussed by Anglin [24]: in our scaling, the
critical velocity found in [24] is 0.2. This critical velocity corresponds to the Landau
criterion.

It is only for larger velocities (v > 0.25) that the handles move up to the top and
detach from the obstacle. This is a wholly nonlinear phenomenon, which cannot be
described by a linear analysis. The vortex handles seem to first nucleate near z = 0
and are connected to the obstacle. As time increases, the bottom ends move away
from the obstacle in a slightly downstream direction while the top end moves up
along the obstacle (Figure 7.5a). When the top ends of the vortices become close to
z = L , the bottom ends reverse their trend of moving away from obstacle. Instead,
they move back to the bottom of the obstacle, as if the handles preferred certain
curvatures (Figure 7.5b). Eventually, the top ends of the handle move away from
the obstacle and produce a pair of vortex tubes with their bottom ends at the bottom
of the obstacle (Figure 7.5c). The handles merge into a half-vortex ring, this half-
ring moves both upward and downstream (Figure 7.5d). Near z = 0, the solution
can be approximated by the solution (7.13) and this solution does not have vortices,
so the instability creates the vortex but the vortex moves away. Vortex detachment
happens only at sufficiently high density, in the region where the nonlinear term
in the equation dominates. The direction of the vortex displacement is due to the
velocity of the flow and the self-interaction of the vortex on itself, which gives a
movement along its normal vector. Meanwhile, while the vortex ring starts to detach
from the obstacle, another pair of vortex handles is forming near the obstacle. The
above process repeats itself periodically.

Note that we have truncated the domain close to the boundary of the cloud, so
that the half-ring we compute would correspond to a closed ring in the experiments.

We have to point out that the critical velocity that we have found for the onset of
vortex shedding is lower than the critical velocity for the 2D problem at z = L . In this
case, v2D = 0.35. So the inhomogeneity in the condensate lowers the critical velocity
from the 2D value. There are formal works computing the critical velocity in 2D
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[113, 149], that is, taking into account the inhomogeneity in the x , y directions due
to the trapping potential, but not in the z direction. One can check that for different
L , the critical velocity does not change.

Rigorous results at low velocity

We want to extend the 2D result and prove the existence of stationary solutions for
small v. To be consistent with the previous notation, we will set c = v, and for
simplicity, we will set 2

√
ρ0 = L = 1. The variables are x = (x, y, z), and we

will set r =
√

x2 + y2 when necessary. In this setting, the stationary solutions are
solutions of

�u − 2ic∂x u + (z − |u|2)u = 0 in � = (R2 \ B1) × (0, 1). (7.14)

The boundary conditions are

u = 0 on {z = 0} and {r = 1}, u = ψc on {z = 1}, (7.15)

where ψc is the solution of the corresponding 2D problem (7.2)–(7.3). Let us explain
these boundary conditions: {z = 0} corresponds to the outer boundary of the con-
densate; hence there are no atoms and the wave function vanishes. On the other side,
{z = 1} corresponds to the rescaled interior of the cloud, and the boundary condition
is a stationary version of the 2D problem (7.1). The obstacle is a cylinder in the z
direction of radius r = 1. In the next section, we will prove the following theorem
based on [4].

Theorem 7.2. There exists c0 > 0 such that for all c ∈ (0, c0), problem (7.14)–(7.15)
has a vortex-free solution uc, that is, |uc| > 0 in �.

As in the proof of Theorem 7.1, we first derive properties for the solution u0 at
c = 0: uniqueness and nondegeneracy. An extra difficulty arises, namely, that even
the first part of the energy E0 is not finite:

E0(u, �) =
∫

�

1

2
|∇u|2 + 1

4
(z − |u|2)2. (7.16)

Indeed, we will see that for r large, that is, away from the obstacle, the wave function
u does not tend to some constant (as in the two-dimensional case), but behaves like
p(z), the solution of the following Painlevé equation:

p′′ + (z − p2)p = 0, p(0) = 0, p(1) = 1. (7.17)

Thus, E0(u) cannot be finite, since E0(p) is not.
In order to overcome this difficulty, we need to introduce an energy that is finite.

An idea of Mironescu [97, 112] is that all solutions for c small should have a similar
behaviour at infinity. In particular, if u0 is a solution of (7.14)–(7.15), with c = 0,
then, if �R = (BR \ B1) × (0, 1),
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lim
R→∞

E0(u, �R) − E0(u0, �R) (7.18)

should be written in terms of a finite energy depending on u/u0. Let us define

F0(w) =
∫

�

1

2
u2

0|∇w|2 + u4
0

4
(1 − |w|2)2, (7.19)

where w = u/u0. A simple computation shows that if F0(u/u0) is finite, then the
value of (7.18) is indeed F0(u/u0).

The existence part of the theorem is proved using bounded domains

�R = BR \ B1 × (0, 1),

and passing to the limit in R. The proof follows the same lines as in the 2D case,
except that now u0 vanishes on z = 0, which is a set of infinite measure on
which the energy becomes degenerate. In particular, the estimate of the momentum
L(w, �R) = ∫

�R
u2

0(iw, ∂xw) in terms of the energy F0 is more involved because
near z = 0, the momentum density goes to zero on a set of infinite measure, and it
cannot be directly estimated by the energy. This requires extra devices.

The uniqueness property of u0 is crucial for our existence result for c small. We
do not prove global uniqueness, but only in the special class of solutions with finite
energy.

Open questions

Analogous open questions to the 2D case hold (Open Problems 7.1, 7.2, 7.3), in
particular the nonexistence of stationary solutions for c large and the stability of the
vortex-free solution. The branch of vortex-free solutions should lose stability close
to z = 0, and a study of the linear equation in this region should help.

Open Problem 7.5 Let c2D be the critical velocity for the existence of solutions of
(7.2)–(7.3). Prove that the equivalent c3D defined for problem (7.2)–(7.3) is strictly
smaller.

In this section, we have not written the hydrodynamic formulation of the prob-
lem. An analogous system to (7.7) holds but it is not possible to remove the quantum
pressure term, that is, the term in �

√
ρ/

√
ρ. Indeed, this term is always dominant

close to z = 0, which is a supersonic region. Thus it seems hard to derive information
from this formulation of the equations.

7.2 Proof of Theorem 7.1

Firstly, we will prove the following properties of solutions at c = 0:
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Theorem 7.3. There exists a unique nontrivial nonnegative solution ψ0 of

�ψ0 + (1 − |ψ0|2)ψ0 = 0 in ω = R2 \ B1, (7.20)

with boundary condition (7.3), namely

ψ = 0 on {r = 1}. (7.21)

It is radial increasing in r , tends to 1 as r tends to ∞; 1 − ψ0 and ψ ′
0 tend to 0

exponentially fast when r is large. If ψ is a solution of (7.20)–(7.21) in

X = {ψ ∈ H1
loc(ω, C), E0(ψ) < ∞},

where E0 is defined by (7.5), then ψ is equal to ψ0eiα , where α is a real number.

This will allow us to derive the following theorem, which will imply Theo-
rem 7.1:

Theorem 7.4. There exists c0 > 0 such that for all c ∈ (0, c0), problem (7.2)–(7.3)
has a vortex-free solution ψc, that is, |ψc| > 0 in ω. Moreover, as c tends to 0, ψc

tends to ψ0eiα in L∞(ω), for some α. For all M, there exists c1 such that for c < c1,
up to multiplication by a complex number of modulus 1, ψc is the unique solution
with |E0(ψc) − E0(ψ0)| < M .

Remark 7.5. Let us point out that the results still hold if instead of being the ball B1
(respectively the cylinder B1 × (0, 1)), the obstacle is a doubly symmetric domain D
(respectively D × (0, 1)), star-shaped with respect to the origin, and convex in the x
and y directions.

The proof relies on the fact that for c small, we expect ψc/ψ0 to be close to 1,
so that the energy E0(ψc) − E0(ψ0) is small. We are going to perform a constrained
minimization on bounded domains, constructing approximate solutions on the sets
ωR = ω∩ BR , and then let R go to infinity. For this purpose, we define the following
energies for w = ψ/ψ0:

Fc(w, ωR) = F0(w, ωR) − cL(w, ωR), (7.22)

where

F0(w, ωR) =
∫

ωR

1

2
ψ2

0 |∇w|2 + 1

4
ψ4

0 (1 − |w|2)2, (7.23)

L(w, ωR) =
∫

ωR

ψ2
0 (iw, ∂xw). (7.24)

If the domain is not mentioned, it means that the integrals are taken in the whole
domain ω. We will prove the existence of ψc,R , a solution of the following mini-
mization problem:

IR = inf

{
Fc

(
ψ

ψ0
, ωR

)
, ψ ∈ H1(ωR), F0

(
ψ

ψ0
, ωR

)
≤ δ

}
, (7.25)
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where δ > 0 will be made precise, and with boundary conditions

ψ = 0 on {r = 1}, and ψ = ψ0 on {r = R}, (7.26)

the function ψ0 being defined in Theorem 7.3. First we show that the constraint
in (7.25) is qualified, which is provided by the uniqueness result on ψ0. Then,
we show that the constraint is not active, which implies that ψc,R satisfies (7.2)
in ωR . This relies on a precise estimate of the momentum L in terms of the en-
ergy F0 (Lemma 7.11), and on the fact that if δ is chosen sufficiently small, then
F0(ψ/ψ0) < δ implies that ψ/ψ0 is bounded below by 1/2, and in particular does
not have vortices. Many similar techniques were first developed in the context of
Ginzburg–Landau problems by Bethuel, Brezis, and Helein [32, 33]. With appropri-
ate additional bounds on ψc,R , we pass to the limit as R tends to infinity, to find a
solution of (7.2) in ω. In order to get the convergence in L∞(ω), we need a precise
estimate on the decrease of the energy density at infinity (Lemma 7.13), inspired by
[72, 74].

7.2.1 Solutions at c = 0

In this subsection, we prove Theorem 7.3. We first solve (7.20) in the bounded do-
main ωR = BR \B1 to find a solution ψ0,R and pass to the limit as R tends to infinity:
we minimize

E0(ψ, ωR) =
∫

ωR

1

2
|∇ψ |2 + 1

4
(1 − |ψ |2)2

among real functions, with boundary conditions ψ = 0 on r = 1 and ψ = 1 on
r = R. The minimizer ψ0,R exists and is a positive solution of (7.20) in ωR . The
maximum principle implies that ψ0,R is less than 1. Moreover, by an extension of the
symmetry proof of Gidas, Ni, Nirenberg [69] by W. Reichel [130], ψ0,R is radially
increasing. Classical elliptic estimates yield uniform bounds that allow us to pass to
the limit in R and obtain a positive solution ψ0 of (7.20). At the limit, we also get
that ψ0 is radially increasing and less than 1.

We need to prove that f = 1−ψ0 tends to 0 as r tends to ∞. Note that f satisfies
−� f + f (1 − f )(2 − f ) = 0. Let fR = 1 − ψ0,R . This function satisfies the same
equation as f in ωR . There exists k > 0 such that for R large, k ≤ ψ0,R(2) ≤ 2k.
Hence 1 − fR ≥ k for r ≥ 2, and fR is a subsolution of

−� f + k f = 0 (7.27)

in ωR \ B2. Since (1−k) exp(−√
k(r −2)) is a supersolution of (7.27) in ωR \ B2, we

find that for R large, fR(r) ≤ K exp(−√
kr), which is also true at the limit R = ∞.

Returning to the equation for ψ0, we see that elliptic estimates provide that ψ ′
0 goes

to 0 exponentially fast at infinity. In particular, E0(ψ0) is finite.
Now we prove that any finite energy solution ψ of (7.20)–(7.21) is equal, up to

multiplication by a constant of modulus one, to the solution ψ0.
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This relies on the Pohozaev identity and ideas developped by Mironescu [112].
Let ψ be a complex-valued solution of (7.20)–(7.21) with E0(ψ) finite. The maxi-
mum principle implies that |ψ | is bounded by 1 (this can be seen on the equation for
|ψ |2 − 1). The function w = ψ/ψ0 is well defined in ω since ψ0 does not vanish.

First we show that w is bounded: let us recall that |ψ | is bounded by 1, and by
Gagliardo–Nirenberg inequality (see [32] for instance), ∇ψ ∈ L∞(ω). Since ψ0 is a
radially increasing function, one can derive from the ODE that it is concave, so

∀r ∈ [1, 2], ψ0(r) ≥ ψ0(2)(r − 1).

Thus, we infer that for r ∈ [1, 2], |w| ≤ ‖∇ψ‖L∞
ψ0(2)

. For r ≥ 2, we have ψ0(r) ≥ ψ0(2),

so that |w(r, θ)|2 ≤ 1
ψ0(2)2 . This proves that w is bounded.

We also have that near ∂ B1, w behaves like (∂ψ/∂n)/ψ ′
0(1): this uses Taylor

expansions of ψ , ∂rψ , ψ0, and ψ ′
0 near r = 1.

We are going to see that it is equivalent to say that E0(ψ) is finite or F0(w) is
finite, where

F0(w) =
∫

ω

1

2
ψ2

0 |∇w|2 + ψ4
0

4
(1 − |w|2)2. (7.28)

Indeed, let us multiply the equation for ψ0 (7.20) by (1 − |w|2) and integrate. We
find the following exact decoupling for the energy:

E0(ψ, ωR) = E0(ψ0, ωR) + F0(w, ωR) +
∫

∂ωR

1

2
ψ0

∂ψ0

∂n
(1 − |w|2). (7.29)

The boundary term on ∂ B1 is 0 since |w| is bounded and ψ0 is 0. The boundary term
on ∂ BR tends to 0 as R tends to infinity, since |w|, ψ0 are bounded and Rψ ′

0(R)

tends to 0 exponentially. Hence, we find at the limit

E0(ψ) = E0(ψ0) + F0(w). (7.30)

Thus, it is equivalent to say that E0(ψ) or F0(w) is finite. Note that this will no
longer be the case in 3D.

Using the equation for ψ , we find that w is a solution of

div (ψ2
0 ∇w) + ψ4

0 (1 − |w|2)w = 0 in ω. (7.31)

Let us multiply (7.31) by x · ∇w, integrate in ωR , and add the conjugate:

−
∫

ωR

2ψ2
0 x · ∇(|∇w|2) + 4ψ2

0 |∇w|2 + ψ4
0 x · ∇

(
(1 − |w|2)2

2

)
(7.32)

+
∫

∂ωR

ψ2
0
∂w

∂n
x · ∇w + ψ2

0
∂w

∂n
x · ∇w = 0. (7.33)
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We integrate by parts the x · ∇ terms to obtain∫
ωR

ψ4
0 (1 − |w|2)2 + 2ψ3

0 (1 − |w|2)2x · ∇ψ0 + 4ψ0|∇w|2x · ∇ψ0 (7.34)

=
∫

∂ωR

1

2
ψ4

0 (1 − |w|2)2x · n (7.35)

−ψ2
0

(
∂w

∂n
x · ∇w + ∂w

∂n
x · ∇w

)
+ ψ2

0 x · n|∇w|2. (7.36)

Since the energy F0(w) is finite, we can find a sequence Rn that tends to infinity such
that the boundary terms (7.35)–(7.36) on r = Rn tend to 0. On r = 1, the boundary
terms are zero, since |w| is bounded, ψ0 is zero, ψ0∂τw = 0 (this comes from the
fact that ∂τψ and ∂τψ0 are zero), and ψ0∂nw tends to 0 as r tends to 1 (this requires
an asymptotic development of ∂nψ − (ψ/ψ0)∂nψ0 as r tends to 1). Hence the sum
of the three volume terms (7.34) is zero. We know that ψ0 is radially increasing so
that x · ∇ψ0 > 0, and all the terms of (7.34) are nonnegative. Hence the integrand is
identically zero, which implies that w is equal to a constant of modulus 1.

Remark 7.6. The same kind of proof allows us to obtain uniqueness of solutions in
ωR with w = 1 on ∂ BR , since in this case, the boundary term (7.35) is zero and the
others (7.36) have the same sign as the volume terms.

Remark 7.7. In the proof, we do not use that the energy F0 is finite, but only that we
can find a sequence Rn such that the energy density on r = Rn times |x | tends to 0.
This still holds if we assume that F(w, ωR) = o(log R) as R → ∞.

7.2.2 Existence of a solution to IR

In this subsection, we prove that for problem (7.25)–(7.26), the minimum is achieved:

Lemma 7.8. Let R > 1, c > 0, and δ > 0. Then problem (7.25)–(7.26) has a
minimizer ψ that satisfies

�ψ − 2i
c

1 + λ
∂xψ + (1 − |ψ |2)ψ = 0 in ωR, (7.37)

for some λ ≥ 0.

Proof: First, note that the minimization space, namely

X R =
{
ψ ∈ H1(ωR), F0

(
ψ

ψ0
, ωR

)
≤ δ, ψ satisfies (7.26)

}
,

is not empty. Indeed, ψ0 ∈ X R since F0(1, ωR) = 0 ≤ δ.
Next, we point out that IR > −∞. Let w = ψ

ψ0
. We have
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|L(w, ωR)| ≤ K

(∫
ωR

ψ2
0 |w|2

)1/2 (∫
ωR

ψ2
0 |∇w|2

)1/2

≤ K
√

R

(∫
ωR

ψ2
0 |∇w|2

)1/2 (∫
ωR

ψ4
0 |w|4

)1/4

≤ K
√

R
√

F0(w, ωR)

(∫
ωR

ψ4
0 (|w|2 − 1)2 + R2

)1/4

≤ K
(√

R (F0(w, ωR))3/4 + R (F0(w, ωR))1/2
)

,

which is bounded. Since Fc = F0 − cL , this shows that Fc(w, ωR) is bounded from
below by some constant depending on R, but not on w.

Consider now a minimizing sequence of problem (7.25). This sequence is
bounded in H1(ωR), so that we may extract a subsequence converging weakly in
H1(ωR) and strongly in L p(ωR) for all p < +∞. This allows to pass to the limit in
the energy, and thus find a solution ψc,R of (7.25).

We want to apply Theorem 9.2-2 of [46], to know that the solution ψc,R of
(7.25) satisfies the corresponding Euler–Lagrange equation, namely (7.37), and the
Lagrange multiplier λ associated with the constraint is nonnegative. For this purpose,
one needs to know that the constraints are qualified, that is, if there exists ψ ∈ X R

such that F0

(
ψ
ψ0

, ωR

)
= δ, then the derivative F ′

0

(
ψ
ψ0

)
is not zero. This is a conse-

quence of the fact that F ′
0(w) = −div (ψ2

0 ∇w) + ψ4
0 (|w|2 − 1)w, and that w = 1 is

the unique solution of the equation such that wψ0 is in the space X R , as pointed out
in Remark 7.6.

7.2.3 Bounds on the solutions of IR

In this section, we prove bounds on the minimizer ψc,R of IR (7.25)–(7.26).

Lemma 7.9. Let R > 1, λ ≥ 0, and c > 0. Let ψc,R be a solution of (7.37) with

boundary conditions (7.26). Let w = ψc,R
ψ0

. Then there exists a constant K indepen-
dent of R, λ, and c such that

(i) ‖ψc,R‖2
L∞(ωR) ≤ 1 + c2,

(ii) ‖∇ψc,R‖2
L∞(ωR) ≤ K (1 + c2)3,

(iii)‖w‖2
L∞(ωR) ≤ K (1 + c2)3,

(iv)‖∇w‖2
L∞(ωR) ≤ K (1 + c2)4.

Proof: Since λ ≥ 0, we have c
1+λ

≤ c, so that we may consider without loss of
generality that λ = 0. Hence ψc,R satisfies

�ψc,R − 2ic∂xψc,R + (1 − |ψc,R |2)ψc,R = 0.

Consider now η(x) = ψc,R(x)e−icx . This function satisfies

�η + (1 + c2 − |η|2)η = 0.
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Hence, setting f = |η|2, we have

� f + 2(1 + c2 − f ) f = 2|∇η|2 ≥ 0 in ωR .

Consider an interior maximum of f . At this point, � f ≤ 0, so that f ≤ 1 + c2.
Since on ∂ωR , f ≤ 1 ≤ 1 + c2, this shows that f ≤ 1 + c2. Since |ψc,R |2 = f, we
obtain (i).

Next, (ii) follows from the Gagliardo–Nirenberg inequality (see for in-
stance [32]):

‖∇η‖L∞(ωR) ≤ K
(‖η‖L∞(ωR) + ‖�η‖L∞(ωR)

) ≤ K (1 + c2)3/2,

for some constant K independent of R.
We next prove (iii): a similar proof to that in Section 2.2 yields that for r ∈ [1, 2],

|w| ≤ ‖∇ψc,R‖L∞
ψ0(2)

, and for r ≥ 2, |w(x)|2 ≤ 1+c2

ψ0(2)2 . This proves (iii).
We now turn to (iv), and use the same property of ψ0, together with the identity

∇w = ∇ψc,R
ψ0

− w∇ψ0
ψ0

, and (ii) and (iii). This shows that |∇w(x)|2 ≤ K (1+c2)

(|x|−1)2 if

|x| ≤ 2, and that |∇w(x)|2 ≤ K (1+c2)3 elsewhere. Next, we use Taylor expansions
of ψc,R , ∂rψc,R , ψ0, and ψ ′

0 near r = 1. This will prove the desired inequality for
1 ≤ |x| ≤ 2, concluding the proof. Indeed, consider first the tangential derivative:
we have ∂θw = ∂θψc,R

ψ0
− ψc,R

ψ2
0

∂θψ0. A proof similar to w bounded allows us to obtain

∣∣∣∣1

r
∂θw

∣∣∣∣ ≤ K (1 + c2)2 in B2 \ B1.

Turning to the radial derivative, we have ∂rw = ∂r ψc,R
ψ0

− ψc,R

ψ2
0

∂rψ0. We claim that

⎧⎪⎪⎨
⎪⎪⎩

ψ0 = ψ ′
0(1)(r − 1) + O(r − 1)2,

ψ ′
0 = ψ ′

0(1) + O(r − 1),

ψc,R = (r − 1)∂rψc,R(1, θ) + (1 + c2)2 O(r − 1)2,

∂rψc,R = ∂rψc,R(1, θ) + (1 + c2)2 O(r − 1),

(7.38)

where the terms O(r − 1)k involve constants independent of R and c. Inserting this

into the definition of ∂rw, we find that ∂rw =
(

1 + (1+c2)2

ψ ′
0(1)

)
O(1), where the O(1)

involves constants independent of R and c. This concludes the proof of (iv).

We next prove that |w| cannot be far from 1 in some sense:

Lemma 7.10. There exist K > 0 and δ0 > 0 depending only on the unique solution
ψ0 of (7.20)–(7.21) such that for any R sufficiently large, any w ∈ W 1,∞(ωR), and
any

δ ≤ inf

{
δ0,

K

‖∇w‖12∞

}
,

F0(w, ωR) ≤ δ implies that

1

2
≤ |w| ≤ 3

2
. (7.39)
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The proof is similar to [32]. We just need to take into account that near r = 1,
the weight ψ0 is small. The key point here is that this region is of small measure.

Proof: We prove only the lower bound, the same method applying to the case of the
upper bound. Without loss of generality, we may assume that ‖∇w‖L∞ ≥ 1. Let

α = δ1/12, η = 32δ1/3.

If δ ≤ inf{δ0,
1

(256‖∇w‖∞)3 , (
ψ0(2)

8‖∇w‖∞ )12}, where δ0 depends only on ψ0, the follow-
ing inequalities hold:

α ≤ ψ ′
0(1) = ‖∇ψ0‖∞, η ≤ α

2‖∇ψ0‖∞
, η ≤ 1

8‖∇w‖∞
,

α ≤ ψ0(2)

8‖∇w‖∞
, α ≤ ψ0(2)

2
. (7.40)

We argue by contradiction and assume that there exists x0 ∈ ωR such that
|w(x0)| < 1

2 .

1st case: ψ0(x0) > α. This implies that |x0|−1 ≥ α
ψ ′

0(1)
≥ η. Hence, B(x0, η) ⊂

ω. It may be that B(x0, η) �⊂ ωR , but at least |B(x0, η)∩ωR | ≥ π
3 η2. Let us compute

F0(w, B(x0, η)∩ωR). Using respectively the second and third inequalities of (7.40),
one shows that ψ0 ≥ α

2 and |w| ≤ 3
4 in B(x0, η) ∩ ωR . Hence,

F0(w, ωR) ≥ 1

4

∫
B(x0,η)∩ωR

ψ4
0 (1 − |w|2)2 ≥ 1

4

π

3
η2 α4

16

1

16
= π

3
δ > δ,

which is a contradiction to the hypothesis F0(w, ωR) ≤ δ.
2nd case: ψ0(x0) ≤ α. Since ψ0 is radially symmetric and concave with respect

to r , we then have 1
|x0|−1ψ0(x0) ≥ ψ0(2); hence |x0| − 1 ≤ α

ψ0(2)
. Let x1 = (1 +

α
|x0|ψ0(2)

)x0. Then, |x1| = |x0|+ α
ψ0(2)

≥ 1+ α
ψ0(2)

and |x1| ≤ R if R ≥ 2. According
to the fifth equation of (7.40), we thus have

ψ0(x1) ≥ (|x1| − 1)ψ0(2) ≥ α, and |w(x1)| ≤ |w(x0)| + β‖∇w‖∞ ≤ 5

8
,

where we have used the fourth equation of (7.40). We thus come to a case similar to
the first one, and the same computations give ψ0 ≥ α

2 and 1 − |w| ≥ 1
4 on B(x1, η).

Hence

F0(w, ωR) ≥ 1

4

∫
B(x1,η)

ψ4
0 (1 − |w|2)2 ≥ 1

4

π

3
η2 α4

16

1

16
= π

3
δ > δ,

which is here again a contradiction.

7.2.4 Estimating the momentum

In this subsection, we prove an estimate of the momentum L in terms of the energy
F0. This will allow us to show that the constraint in (7.25) is not active, and therefore
that λ = 0 in (7.37).
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Lemma 7.11. Let R ≥ 2, c > 0, and let ψ ∈ H1(ωR) satisfying (7.26) and such that
w = ψ

ψ0
satisfies (7.39). Then there exists a constant K independent of ψ , R, and c

such that

|L(w, ωR)| ≤ K
(

F0(w, ωR) +
√

F0(w, ωR)
)

. (7.41)

Proof: Since w satisfies (7.39), we know that there exist ρ, φ ∈ H1(ωR) such that
ρ ≥ 1/2 and

w = ρei(φ+dθ),

where d ∈ Z, and θ is the polar angle of x. In addition, the fact that ∇w ∈ L2(Bc
2)

implies that d must be zero. Using the equality above in the definition of L , we obtain

L(w, ωR) =
∫

ωR

i

2
ψ2

0 (w∂xw − w∂xw) =
∫

ωR

ψ2
0 ρ2∂xφ.

Let α ∈
(

1
2 , 1

)
(which will be made precise below), and consider separately the

integral over {r < 1 + α} ∩ ωR and over {r > 1 + α} ∩ ωR . We have

∣∣∣∣
∫

1<r<1+α

ψ2
0 ρ2∂xφ

∣∣∣∣ ≤
(∫

1<r<1+α

ψ2
0 |∇w|2

) 1
2
(∫

1<r<1+α

ψ2
0 |w|2

) 1
2

≤ K
√

F0(w)

(∫
1<r<1+α

ψ2
0

) 1
2

≤ K‖∇ψ0‖∞α
√

F0(w)
(
(1 + α)2 − 1

) 1
2

≤ Kα3/2
√

F0(w), (7.42)

where K depends only on ψ0.
Turning to the integral over the set {r > 1 + α}, we have∫

1+α<r<R
ψ2

0 ρ2∂xφ =
∫

1+α<r<R
ψ2

0 (ρ2 − 1)∂xφ +
∫

1+α<r<R
(ψ2

0 − 1)∂xφ

+
∫

1+α<r<R
∂xφ. (7.43)

We consider separately the three terms above:

∣∣∣∣
∫

1+α<r<R
ψ2

0 (ρ2 − 1)∂xφ

∣∣∣∣ ≤
(∫

1+α<r<R
ψ2

0 (ρ2 − 1)2
) 1

2
(∫

1+α<r<R
ψ2

0 ∂xφ
2
) 1

2

≤ K

α

(∫
ωR

ψ4
0 (ρ2 − 1)2

) 1
2
(∫

ωR

ψ2
0 ρ2|∇φ|2

) 1
2

≤ K

α
F0(w). (7.44)
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Here we have used the fact that ρ > 1/2 and there exists a constant K independent
of α such that in {r ≥ 1 + α}, we have ψ0 ≥ Kα. The second term is dealt with in a
similar way:

∣∣∣∣
∫

1+α<r<R
(ψ2

0 − 1)∂xφ

∣∣∣∣ ≤ 2

(∫
1+α<r<R

(ψ2
0 − 1)2

ψ2
0

) 1
2 (∫

ωR

ψ2
0 ρ2∂xφ

2
) 1

2

≤ K

α

√
F0(w). (7.45)

This is due to the fact that ψ0 is bounded below and E0(ψ0) is finite. Finally, we
integrate by parts the last term and get (recall that φ = 0 on r = R)∣∣∣∣

∫
1+α<r<R

∂xφ

∣∣∣∣ =
∣∣∣∣
∫

r=1+α

φnx

∣∣∣∣ =
∣∣∣∣
∫

r=1+α

(
φ − inf

r=1+α
φ

)
nx

∣∣∣∣
≤ K

α

(∫
r=1+α

ψ2
0 ρ2|∇φ|2

) 1
2

. (7.46)

We next point out that since
∫

1<r<2 ψ2
0 ρ2|∇φ|2 ≤ 2F0(w), there exists α ∈

(
1
2 , 1

)
such that ∫

r=1+α

ψ2
0 ρ2|∇φ|2 ≤ 4F0(w).

This inequality, together with (7.42), (7.43), (7.44), (7.45), and (7.46), implies (7.41).

The results above allow us to show that the Lagrange multiplier λ is in fact zero.

Proposition 7.12. There exist δ1 > 0 and K > 0 such that for all R ≥ 2, δ ≤ δ1,
and c ∈ (0, K

√
δ), any minimizer ψc,R of (7.25) with boundary conditions (7.26)

satisfies F0

(
ψc,R
ψ0

)
< δ. In addition, ψc,R is a solution of

�ψ − 2ic∂xψ + (1 − |ψ |2)ψ = 0 in ωR . (7.47)

Proof: Consider c, δ ≤ 1, and let ψc,R be a minimizer of (7.25). Applying Lemma 7.8
and then Lemma 7.9, we find that there is a constant K1 > 0 independent of R, c,
and δ such that if w = ψc,R

ψ0
, then ‖∇w‖∞ ≤ K1. Hence, applying Lemma 7.10, we

find that there exists some δ1 > 0 independent of R, c, and δ such that if δ ≤ δ1,
F0(w, ωR) ≤ δ implies that w satisfies (7.39).

We now apply Lemma 7.11 and find that for some constant K2 independent of R,
c, and δ, we have |L(w, ωR)| ≤ K2(F0(w, ωR)+√

F0(w, ωR)) ≤ 2K2
√

F0(w, ωR).

We want to prove that the constraint in (7.25) is not active, that is, the minimizer
cannot satisfy F0(w, ωR) = δ. Assume that this is the case. The estimate on the
momentum implies that

Fc(w, ωR) ≥ δ − 2cK2
√

δ.
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Now, ψ = ψ0 is a test function for problem (7.25). Hence, we must have Fc(w) ≤
Fc(1) = 0. Thus,

0 ≥ δ − 2cK2
√

δ.

If c < 1
2K2

√
δ, this is a contradiction. Hence, for any minimizer ψc,R , F0

(
ψc,R
ψ0

, ωR

)
<

δ. The constraint in (7.25) is not active, and the corresponding Lagrange multiplier
must be zero. Hence, ψc,R satisfies (7.37) with λ = 0, namely (7.47).

7.2.5 Proof of Theorem 7.4

We now conclude the proof of Theorem 7.4. We apply Proposition 7.12, and find that
for some c0 = K

√
δ1, there exists a solution ψc,R of (7.47) with boundary conditions

(7.26). In addition, this function satisfies

F0

(
ψc,R

ψ0
, ωR

)
< δ, ‖ψc,R‖W 1,∞(ωR) ≤ K , (7.48)

for some constants K and δ independent of R. Thus we can extract a subsequence
with weak convergence in H1

loc and strong convergence in L4
loc. At the limit R →

+∞, it yields a solution ψc of (7.2)–(7.3) such that F0(ψc/ψ0) ≤ δ, ψc is bounded

in W 1,∞, 1
2 ≤

∣∣∣ψc
ψ0

∣∣∣ ≤ 3
2 . It implies in particular that the solution is vortex-free. Using

the equation for ψc, we find that as c → 0, ψc converges to ψ0 (up to multiplication
by a constant of modulus one) in L∞

loc. To show that we have convergence in L∞(ω),

we point out that ψc converges to 1 at infinity, uniformly with respect to c → 0. This
is proved in Lemma 7.13 below.

The uniqueness of the solutions of (7.2)–(7.3) with finite energy will be proved
only in the 3D case, since the arguments are very similar.

7.2.6 Limit at infinity

Lemma 7.13. Let M > 0, and let ψc be a solution of (7.2)–(7.3) such that E0(ψc) ≤
M. Then, up to multiplication by a constant of modulus one,

lim
|x|→∞

ψc(x) = 1, (7.49)

uniformly with respect to c −→ 0.

Proof: We follow the proof of [72, 74] , in which such a property is established for
the same equation in R3. The proof of [72, 74] does not work in dimension 2, but
with a more precise estimate on the decay of the energy, we are able to adapt it.

Step 1: Limit of |ψc|: lim|x|→∞ |ψc(x)| = 1, uniformly with respect to c.

Proof: This property may be directly derived from the upper bound on the gradient
and the fact that the energy is finite. We refer to [41] for the details. Here, the ad-
ditional property we need is that the limit is uniform with respect to c → 0. We



178 7 Superfluid Flow Around an Obstacle

argue by contradiction and assume that there exists ε > 0, a sequence cn → 0, and a
sequence xn such that |xn| → ∞ and∣∣|ψcn (xn)| − 1

∣∣ ≥ ε.

Consider now the function ψ̃n = ψcn (·+xn). It is bounded in L∞, and satisfies (7.2)
and E0(ψn) ≤ M. Hence, passing to the limit, we find a solution of (7.2) in R2 with
finite energy and 0 degree. But this must be a constant of modulus one, according
to [41].

Step 2: Decay of the energy: Let e(ψ) = 1
2 |∇ψ |2 + 1

4 (1 − |ψ |2)2. There exist
K > 0, α > 1, and R0 > 1 independent of c such that for R > R0,∫

Bc
R

e(ψc) ≤ K

Rα
. (7.50)

The following argument is a slight improvement of the proof of Proposition 28
of [72] (see also [34]), to which we refer for details. The extra information we need
here is that in the decay, α > 1.

Proof: Let ε be a positive constant, to be made precise later on. We consider R0 large
enough so that 1−ε ≤ |ψc| ≤ 1+ε for r > R0. This R0 may be chosen independent
of c. Moreover, as pointed out in the proof of Lemma 7.11, we know that there exist
ρ > 0 and φ such that ψc = ρeiφ. Inserting this decomposition in (7.2), we obtain{

�ρ − ρ|∇φ|2 + 2cρ∂xφ = ρ(ρ2 − 1),

div (ρ2∇θ) = c∂x (ρ
2).

(7.51)

Let φR = 1
2π R2

∫
SR

φ, where SR is the sphere of radius R. We multiply the second
equation of (7.51) by φ − φR and integrate, and then multiply the first equation by
ρ2 − 1 and integrate over Bc

R . Adding the results, we obtain∫
Bc

R

e(ψc) = 1

4

∫
Bc

R

ρ(1 − ρ2)|∇φ|2 +
∫

Bc
R

(1 − ρ)

(
|∇ρ|2

2
+ (1 − ρ2)2

4

)

+ c
∫

Bc
R

ρ(ρ2 − 1)∂xφ + c

2

∫
Bc

R

(1 − ρ)(ρ2 − 1)∂xφ

− 1

4

∫
SR

∂nρ(ρ2 − 1) − 1

2

∫
SR

ρ2∂nφ(φ − φR)

+ c

2

∫
SR

(φ − φR)(ρ2 − 1)nx . (7.52)

Estimating each term of the right-hand side of (7.52) separately and using the
Poincaré inequality on SR , one easily gets∫

Bc
R

e(ψc) ≤ (c
√

2 + 3ε)

∫
Bc

R

e(ψc)

+R

(√
1 + c2

2
(1 + ε) + cε + 1

2
√

2R

) ∫
SR

e(ψc).
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Let J (R) = ∫
Bc

R
e(ψc). Choosing c and ε small enough (c <

√
2−1
4 is sufficient

here), we find that there exists A < 1 such that J (R) ≤ −AR J ′(R). This implies

that J (R) ≤ K R− 1
A , and yields (7.50).

The key point that we have checked here is that indeed 1/A > 1. In the sequel, we
set, for any r ≥ 1,

ψr
c (ξ) = ψc(rξ), ξ ∈ S1.

Step 3: Existence of a limit

∃ψ∞
c ∈ L2(S1) such that ψr

c −→
r→∞ ψ∞

c in L2(S1), (7.53)

uniformly with respect to c → 0.

Proof: We first point out that if f (r) = ∫
Sr

|∇ψc|2, we know that ‖ f ‖L1(1,+∞) is

bounded independently of c, and that
∫ +∞

R f (r)dr ≤ K
Rα , with α > 1 and K > 0

independent of c. This clearly implies that ‖r f ‖L1(1,+∞) is bounded independently
of c, and thus that

∥∥|x||∇ψc|2
∥∥

L1(ω)
inherits this property.

Moreover, we have

∫
S1

|ψr
c − ψr ′

c |2 ≤
∫

S1

∣∣∣∣∣
∫ r ′

r
∂sψ

s
c (ξ)

∣∣∣∣∣
2

dξ

≤
∫

S1

(∫ r ′

r

ds

s2

)(∫ r ′

r
|∇ψc|2(sξ)s2ds

)
dξ

≤
(

1

r
− 1

r ′

) ∫
Br ′ \Br

|x||∇ψc|2dx,

which proves that ψr is a Cauchy sequence in L2(S1), uniformly with respect to
c → 0, from which we deduce (7.53).

Step 4: ψ∞
c is constant:

Proof: We know that for a sequence Rn going to infinity,
∫

SRn
|x||∇ψc|2 converges

to zero as n tends to infinity. Thus, using the inequality |∇ψc(rξ)|2 ≥ 1
r2 |∇S1ψr

c |2,
we have ∫

S1

|∇S1ψr
c |2 ≤

∫
S1

|∇ψ(rξ)|2r2dξ =
∫

Sr

|x||∇ψc|2,

which proves that for a sequence Rn going to infinity, ∇S1ψ
Rn
c converges to 0 as n

goes to infinity. Hence, ∇S1
ψ∞

c = 0.

We now conclude by pointing out that H1(S1) is embedded into L∞(S1), and we
thus have convergence of ψr

c to ψ∞
c in L∞(S1), which proves that lim|x|→∞ ψc(x) =

ψ∞
c . Using the fact that E0(ψc) < +∞, we find that the constant ψ∞

c is a constant
of modulus one, concluding the proof.
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7.3 Proof of Theorem 7.2

Theorem 7.14. There exists a unique nontrivial nonnegative solution u0 of

�u0 + (z − |u0|2)u0 = 0 in � = (R2 \ B1) × (0, 1), (7.54)

with boundary condition (7.15) and c = 0, namely

u = 0 on {z = 0} and {r = 1}, u = ψ0 on {z = 1}, (7.55)

where ψ0 is defined in Theorem 7.3. The solution u0 depends on r and z, is increasing
in r and in z. Moreover, (u0 − p) tends to 0 exponentially fast when r is large, where
p is the solution of (7.17), u0 is the unique solution of (7.54)–(7.55) in

Y =
{

u ∈ H1
loc(�, C), F0

(
u

u0

)
< ∞

}
,

where F0 is defined by (7.19).

Remark 7.15. Let us point out that the invariance with respect to multiplication by
a constant of modulus one, which appears in Theorem 7.3, is lost in the three-
dimensional case due to the boundary condition on {z = 1}, which fixes the cor-
responding phase.

Theorem 7.16. There exists c0 > 0 such that for all c ∈ (0, c0), problem (7.14)–
(7.15) has a vortex-free solution uc. Moreover, as c tends to 0, if the upper boundary
condition ψc in (7.15) is the one tending to ψ0, then uc tends to u0 in L∞(�). For all
M, there exists c1 such that for c < c1, uc is the unique solution with F0(uc/u0) <

M:

Fc(w, �R) = F0(w, �R) − cL(w, �R), (7.56)

where

L(w, �R) =
∫

�R

u2
0(iw, ∂xw). (7.57)

The corresponding minimization problem is

IR = inf

{
Fc

(
u

u0
, ωR

)
, u ∈ H1(�R), F0

(
u

u0
, ωR

)
≤ δ

}
, (7.58)

with boundary conditions

u = 0 on {r = 1} and {z = 0}, u = u0 on {r = R}, u = ψc,R on {z = 1}, (7.59)

where u0 is defined in Theorem 7.14 and ψc,R is the 2D solution constructed above.
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7.3.1 Proof of Theorem 7.14

Existence of u0

In this subsection, we prove the existence of a solution of (7.54)–(7.55). As in the 2D
case, we first construct real-valued solutions in �R = ωR × (0, 1). We want to solve
(7.54) with boundary conditions (7.15) and u(R, z) = ψ0(R)p(z): 0 is a subsolution
and ψ0 is a supersolution; hence there is a real positive solution u R in between.
Using the moving plane and sliding methods [28, 29], we can prove that u R depends
on r and z, and is increasing in r and in z. In particular, ‖u R‖∞ ≤ ‖ψ0‖∞ ≤ 1.
Classical elliptic estimates yield uniform bounds that allow one to pass to the limit
in R and obtain a positive real solution u0 of (7.54)–(7.55) in �. Moreover, u0 is also
increasing in r and in z.

Properties of u0

Let u0 be the solution obtained above. We prove here that u0 is the unique nonnega-
tive nontrivial solution of (7.54)–(7.55) and that u0 − p goes to 0 exponentially fast
at infinity. The proof is divided into several steps.

Step 5: For all r0, γ > 0, there exists β > 0 such that ∂u0/∂n ≥ β on {r =
1} ∩ {z ≥ γ } and on {z = 0} ∩ {r ≥ r0}. Moreover, there exists K such that for
r ≥ r0, u0 ≥ K z.

Note that we have to avoid the corner r = 1, z = 0 where the normal derivatives go
to zero.

Proof: On {r = 1}, this is a consequence of the Hopf lemma. On z = 0, let us
prove it by contradiction and assume that there is a sequence xn on {z = 0} such that
|∂u0/∂n(xn)| tends to 0. Applying the Hopf lemma, we find that necessarily, |xn|
tends to infinity. Let un(x) = u0(x + xn). Since un is bounded in L∞ and in H2

loc, it
converges uniformly on every compact subset to u, which is a solution of

�u + u(z − u2) = 0 in R2 × (0, 1), u ≥ 0, (7.60)

u = 0 on {z = 0}, u = 1 on {z = 1}. (7.61)

The boundary condition at {z = 1} comes from the limit of ψ0 at infinity. We also
have at the limit ∂u

∂n (0) = 0, which provides a contradiction with the Hopf lemma.
The last statement comes from the lower bound on ∂u0/∂n for z < γ and the

fact that for z > γ , u cannot vanish; hence u0 is bounded below.

Step 6: Let x0 ∈ {r = 1} ∩ {z = 0}, and let ξ be a direction at x0 that enters �

nontangentially. Then ∂2u0
∂ξ2 (x0) > 0. In particular, for all γ and r0, there exists K

such that u ≥ K z2 in {z < γ } ∩ {r < r0}.
Proof: The fact that u0 = 0 on {z = 0} and on ∂ B1 × (0, 1) implies that ∂u0

∂ξ
(x0) = 0.

The property on the second derivative thus follows from the Serrin corner lemma
(see [145], lemma 1). This implies the bound from below for u0.
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Step 7: Nondegeneracy of u0: Let φ ∈ L∞(�) be a complex-valued solution of

�φ + (z − u2
0)φ − u2

0(φ + φ) = 0 in �, φ = 0 on {z = 0}, {z = 1}, {r = 1}.
(7.62)

Then φ ≡ 0.

Proof: Let us separate φ into real and imaginary parts, a and b. We have

�a + (z − 3u2
0)a = 0, �b + (z − u2

0)b = 0,

with homogeneous boundary conditions. We use a proof adapted from [29] to get
that b is zero. Consider the function w = b

u0
. It satisfies div (u2

0∇w) = 0 in �, and

vanishes on {z = 1} and {r = 1}. We claim that w is bounded in �: for z > γ and
r > r0, this comes from step 1, since u0 is bounded below; near z = 0 and r = 1,
the proof is similar to that in Section 2.2 and uses the bound from below of ∂u0/∂n
derived in step 1.

We are going to use a cutoff function ξ independent of z, defined by

ξ = 1 for r ≤ R, ξ = 0 for r ≥ 2R, ξ = 1 − r

2R
for R ≤ r ≤ 2R. (7.63)

Multiplying div (u2
0∇w) = 0 by wξ2 and integrating, we have∫

�

ξ2u2
0|∇w|2 ≤ 2

∣∣∣∣
∫

�

u2
0ξw∇ξ · ∇w

∣∣∣∣
≤ 2

(∫
�∩{R<r<2R}

u2
0ξ

2|∇w|2
)1/2 (∫

�

u2
0w

2|∇ξ |2
)1/2

.

≤ C

(∫
�∩{R<r<2R}

u2
0ξ

2|∇w|2
)1/2

,

which implies that
∫
�

ξ2u2
0|∇w|2 < +∞, and in turn that

∫
u2

0|∇w|2 = 0. Hence,
∇w = 0, so that b = γ u0, for some constant γ. But the boundary condition on
{z = 1} implies that γ = 0, so that b = 0.

Next, we prove that a = 0: w = a
u0

satisfies div (u2
0∇w) − 2u4

0w = 0. Hence,
the same proof as above applies to this case, and yields∫

�

ξ2u2
0|∇w|2 + 2

∫
O

u4
0ξ

2w2 ≤ C

(∫
�∩{R<r<2R}

u2
0ξ

2|∇w|2
)1/2

showing that
∫

u2
0|∇w|2 = 0 and a = 0.

Step 8: Uniqueness of the real nonnegative solution.

Proof: Let u0 be the solution obtained above, and consider a nonnegative solution u
of (7.54)–(7.55). We define w = u

u0
and get that div (u2

0∇w) − u4
0w(w2 − 1) = 0,

with w = 1 on {z = 1} and w is bounded. Thus, multiplying this equation by
ξ2(w − 1), with ξ defined by (7.63), and using the same argument as above, we
prove that w is a constant, and hence w = 1.
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Remark 7.17. Similar proofs allow us to get that there is a unique solution of

�u + u(z − |u|2) = 0 in R2 × (0, 1), (7.64)

u = 0 on {z = 0}, u = 1 on {z = 1}, (7.65)

which is also nondegenerate. This solution is p(z), the solution of (7.17).

Step 9: Behaviour at ∞: u0 − p(z) tends to 0 exponentially fast as r tends to ∞,
uniformly in z.

Proof: We first show that u0 tends to p(z) as r tends to infinity, uniformly in z:
assume by contradiction that u0 does not tend to p(z) as r tends to ∞. Then, one
can find a sequence xn = (xn, yn, zn) in � such that |u0(xn) − p(zn)| ≥ ε > 0. Let
un(x) = u0(x+x′

n), where x′
n = (xn, yn, 0). Since u0 is bounded, we can pass to the

limit in n and find that un converges uniformly on every compact subset to u, which
is a solution of (7.60)–(7.61), with |u(0, z) − p(z)| ≥ ε, where z = lim zn . This
provides a contradiction to Remark 7.17, since the only solution of (7.60)–(7.61)
is p(z).

We are now in position to prove that there exist some constants K > 0 and
α > 0 such that

|u0(x) − p(z)| ≤ K e−αr , (7.66)

where r =
√

x2 + y2. For this purpose, let us first define

M(R) = sup
r≥R

|u0(x) − p(z)|.

Then, (7.66) is clearly equivalent to the following statement:

∃R > 0, ∃γ ∈ (0, 1) s.t. ∀T ≥ 1, M(R + T ) ≤ γ M(T ). (7.67)

We argue by contradiction, and assume that there exist sequences Rn, γn, Tn satisfy-
ing the following:⎧⎨

⎩
Rn −→ +∞,

γn −→ 1,

Tn ≥ 1,

and M(Rn + Tn) > γn M(Tn).

Thus, one can find xn ∈ � such that rn = √
x2

n + y2
n ≥ Rn + Tn ,

|u0(xn) − p(zn)|
M(Rn + Tn)

−→ 1,

and |u0(xn) − p(zn)| > γn M(Tn). We define the function fn by

fn(x) = u0(x + xn, y + yn, z) − p(z)

M(Rn + Tn)
.
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This function is bounded in BRn × (0, 1), so we may extract a subsequence and
pass to the limit in the equation. Since we already know that u0 converges to p(z) at
infinity. This equation reads

� f + (z − 3p2) f = 0 in R2 × (0, 1), (7.68)

with | f (0, z∞)| = 1 ≥ ‖ f ‖∞, where z∞ = lim zn . In addition, f vanishes on
{z = 0} and {z = 1}. Remark 7.17 implies that f is zero. This is a contradiction.

Remark 7.18. A similar proof allows us to get that u0/p tends to 1 exponentially fast
as r goes to ∞, and in particular (u0 − p)/p is in L2(�).

Uniqueness of u0

In this section, we prove that any solution of (7.54)–(7.55) of finite energy (i.e., such
that F0(u/u0) < ∞) is in fact equal to u0.

Let u be a solution of (7.54)–(7.55) with F(u/u0) finite. Let w = u/u0. Then
w is a solution of

div
(

u2
0∇w

)
+ u4

0

(
1 − |w|2

)
w = 0 in �. (7.69)

The boundary conditions are w = 1 on z = 1. Moreover, w is bounded. The proof
of this fact is similar to the 2D case close to the obstacle; when z is close to 0, it uses
step 5 of Section 7.3.1 and the bound below on u0 by K z far away from the obstacle
and by K z2 close to the obstacle. The last estimate is a consequence of step 6 of
Section 7.3.1.

The key tool is to use the Pohozaev identity as in the 2D case, but here we
multiply by x/|x|·∇w instead of just x·∇w, integrate over �R , and add the conjugate:

−
∫

�R

u2
0

x
|x| · ∇(|∇w|2) + 2

u2
0

|x| |∇w|2 + u4
0

x
|x| · ∇

(
(1 − |w|2)2

2

)
(7.70)

+
∫

�R

2u2
0
|x · ∇w|2

|x|3 +
∫

∂�R

u2
0
∂w

∂n

x
|x| · ∇w + u2

0
∂w

∂n

x
|x| · ∇w = 0. (7.71)

We integrate by parts the x · ∇w terms and obtain∫
�R

(
u4

0

|x| + 2u3
0

x · ∇u0

|x| )(1 − |w|2)2 + 2u2
0
|x · ∇w|2

|x|3 + 2
u0x · ∇u0

|x| |∇w|2

=
∫

∂�R

1

2
u4

0(1 − |w|2)2 x
|x| · n − u2

0
∂w

∂n

x
|x| · ∇w − u2

0
∂w

∂n

x
|x| · ∇w (7.72)

+
∫

∂�R

u2
0

x
|x| · n|∇w|2.

We are going to prove that the sum of the boundary terms is nonpositive as R tends
to infinity. On {z = 0} and {r = 1}, the same reasoning as in the 2D case allows to
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get that u0∇w = 0. Moreover, u2
0(1 − |w|2) = u2

0 − u2 = 0, so that the boundary
terms are zero. On {z = 1}, w = 1, so the derivative is only in the normal direction
and the boundary terms are equal to

−
∫

{z=1}∩∂�R

u2
0

∣∣∣∣∂w

∂z

∣∣∣∣
2

,

which is negative. On {r = R}, the terms tend to 0 for a suitable sequence Rn tending
to infinity because the energy F0(w) is finite. In total, the sum of the volume terms
is nonpositive as Rn tends to infinity. Since x ·∇u0 is positive, we find that each term
is zero. This and the boundary condition on {z = 1} yield that w ≡ 1.

Remark 7.19. The uniqueness result is also true for solutions in �R with outer
boundary condition w = 1 on {r = R}. Indeed, on {r = R}, w = 1 and the gradient
of w is only in the normal direction, so that the boundary term is negative.

Remark 7.20. Let us point out that the power of |x| we use in the Pohozaev identity
is linked to the dimension: indeed, the starting point of the method is the following
formula, obtained by multiplying −�u by |x|αx · ∇u and integrating by parts in D,
a domain of Rd :∫

D
(−�u) |x|αx · ∇u =

∫
D

α|x |α−2 (x · ∇u)2 +
(

1 − α + d

2

)
|x|α|∇u|2

+
∫

∂D

1

2
|x|αx · n|∇u|2 − ∂u

∂n
|x|αx · ∇u.

Hence, in order to cancel one of the volume terms, we need to choose α = −d + 2.

Remark 7.21. A similar proof allows us to obtain that p(z) is the unique solution of
(7.60)–(7.61) among complex-valued functions such that Fp(u/p) is finite, where
Fp is defined similarly to F0, with u0 replaced by p.

7.3.2 Proof of Theorem 7.16

We are going to use the same strategy as in Section 7.2, proving first that prob-
lem (7.58)–(7.59) has a solution uc,R (Lemma 7.22). The proof that the constraint
is qualified cannot be made as in the 2D case. Then, we show that uc,R satisfies an
equation similar to (7.14), derive bounds on uc,R (Lemma 7.24 and 7.25), and check
that the constraint is not active thanks to an estimate of the momentum by the en-
ergy (Lemma 7.26). Then we pass to the limit as R tends to infinity, which yields a
solution of (7.14) with boundary conditions (7.3).

The extra difficulty compared to the 2D case comes from the fact that u0 van-
ishes on z = 0, so that the estimate of the momentum is more involved.
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Existence of a solution to I R

In this subsection, we prove that problem (7.58)–(7.59) has a solution:

Lemma 7.22. There exist c0, R0 > 0 such that for any R > R0, any c ∈ (0, c0),
and any δ > 0, problem (7.58)–(7.59) has a solution uc,R that satisfies

�u − 2i
c

1 + λ
∂x u + (z − |u|2)u = 0 in �R, (7.73)

for some λ ≥ 0.

Proof: We denote by XR the set on which we want to minimize Fc:

XR =
{

u ∈ H1(�R), F0

(
u

u0
, �R

)
≤ δ, u satisfies (7.59)

}
.

Let us first check that XR is not empty. Consider the function u = u0
ψc,R
ψ0

, where
ψc,R is a minimizer of problem (7.25), the 2D functions being supposed to be con-
stant with respect to z. This function u clearly satisfies the boundary conditions
(7.59). For fixed z, we have u0(r, z) ≤ ψ0(r), since u0 is increasing in z, so that

F0

(
u

u0
, �R

)
=

∫
�R

u2
0

2

∣∣∣∣∇
(

ψc,R

ψ0

)∣∣∣∣
2

+ u4
0

4

(
1 −

∣∣∣∣ψc,R

ψ0

∣∣∣∣
2
)2

<

∫ 1

0
dz

∫
ωR

ψ2
0

2

∣∣∣∣∇
(

ψc,R

ψ0

)∣∣∣∣
2

+ ψ4
0

4

(
1 −

∣∣∣∣ψc,R

ψ0

∣∣∣∣
2
)2

<

∫ 1

0
F0

(
ψc,R

ψ0

)
dz ≤ δ.

Hence, u ∈ XR , so that the set is not empty.
Next, one easily proves using the same method as in the 2D case that

|L(w, �R)| ≤ K
(√

R (F0(w, ωR))3/4 + R (F0(w, ωR))1/2
)

,

which implies that Fc is bounded from below on XR . Here again, any minimizing
sequence is weakly compact in H1(�R), so we may pass to the limit in the energy
and find a minimizer uc,R of (7.58) with boundary conditions (7.59).

Let us prove that the constraints are qualified, namely that there is no u such
that w = u/u0 satisfies F0(w) = δ, w is a solution of (7.69), and u0w satisfies the
boundary conditions (7.59). Thanks to our test function above, the minimizer of F0
in the set F0 ≤ δ is such that F0 < δ. Thus, if we prove the uniqueness of solutions
of (7.69)–(7.59) in the set F0 ≤ δ, this will imply that there cannot be a critical point
with energy F0 = δ.

Let us prove the uniqueness by contradiction, which is a consequence of the
uniqueness and nondegeneracy of u0. Let us assume that there is a sequence cn tend-
ing to 0, and Rn to ∞ such that there are two solutions u1,n and u2,n of (7.69)–(7.59)
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in �Rn , with F0 ≤ δ. The L∞ bounds on the solutions and the gradient (see Proposi-
tion 7.24 below) allow us to pass to the limit in n and get that u1,n converges to some
u, which is a solution of (7.54)–(7.55) in �, with finite F0. The uniqueness result of
Theorem 7.14 implies that in fact u = u0. Similarly, u2,n converges to u0.

Let
vn = u1,n − u2,n

‖u1,n − u2,n‖∞
,

which satisfies homogeneous Dirichlet boundary conditions on ∂�Rn . By usual el-
liptic estimates, the maximum of |vn| cannot be achieved close to the boundary of
the domain: it is achieved at some point bounded away from the boundary uniformly
with respect to n. Assume that the maximum of vn stays in a bounded domain. We
thus find that vn converges to a solution of (7.62), which is impossible since the
only solution is zero by step 7 of Section 7.3.1 and the limit of vn is equal to one
somewhere. So it means that the maximum of vn is achieved at a point xn tending to
infinity. We define wn = vn(·+xn). Then wn converges to a solution of the linearized
problem around p(z) (7.68), and we also know that it is zero by Remark 7.17.

Remark 7.23. Here, it is not possible to prove that the constraints are qualified in
the same way as in the two-dimensional case. Indeed, the equivalent of Remark 7.6
does not hold because of the boundary condition on z = 1: we have uniqueness for
equation (7.54), which indeed is the derivative of F0, but with boundary conditions
(7.55), which is a different boundary condition from (7.59) due to the presence of
ψc,R . The boundary condition (7.59) implies that the solution is complex-valued;
hence the uniqueness proof that we have used in Section 7.3.1 does not work as
such.

Bounds on the solutions of IR

This subsection is the equivalent of Section 7.2.3 for the present three-dimensional
case: we prove bounds on the minimizer ψc,R of (7.58)–(7.59).

Lemma 7.24. Let R > 1, c > 0, and λ ≥ 0. Let uc,R be a solution of (7.73) with
boundary conditions (7.59). Let w = u

u0
. There exists a constant K independent of

R, λ, and c such that

(i) ‖uc,R‖2
L∞(�R) ≤ 1 + c2,

(ii) ‖∇uc,R‖2
L∞(�R) ≤ K (1 + c2)3,

(iii)‖w‖2
L∞(�R) ≤ K (1 + c2)3,

(iv)‖∇w‖2
L∞(�R) ≤ K (1 + c2)4.

Proof: The proof of (i), (ii), and (iii) follows exactly the same lines as the correspond-
ing ones in Lemma 7.9. Turning to the proof of (iv), we may carry out the same proof
to have

‖∇w‖L∞(�R∩{z> 1
2 }) ≤ K (1 + c2)3.
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In order to show that the same inequality holds near z = 0, we use Taylor expansions
of uc,R , ∇uc,R , u0, and ∇u0, with respect to z, and the equality ∇w = ∇uc,R

u0
−

∇u0uc,R

u2
0

. The proof follows exactly the same lines as those of (iv) of Lemma 7.9.

We next prove here again that if F0(w) is small and if ∇w is suitably bounded,
then |w| is close to 1:

Lemma 7.25. There exist K > 0 and δ0 > 0 depending only on the unique solution
u0 of (7.54)–(7.55) such that, for any w ∈ W 1,∞(�R) and any

δ ≤ inf

{
δ0,

K

‖∇w‖12∞

}
,

F0(w, �R) ≤ δ implies that

1

2
≤ |w| ≤ 3

2
. (7.74)

Proof: We use exactly the same strategy as in Lemma 7.10, with different powers of
δ for α and η. For instance, α = δ1/8 and η = 4δ1/6 is a suitable choice. The first
case is treated exactly in the same way (here, the inequality |B(x0, η) ∩ ωR | ≥ π

3 η2

is replaced by |B(x0, η)∩�R | ≥ 1
6

4π
3 η3, valid if R is large enough). The only slight

difference is in the second case, where one may need to shift x0 away from {z = 0},
instead of shifting it away from B1 × (0, 1). If x0 is close to {r = 1}, and away from
{z = 0}, we define x1 as in the 2D case. If x0 is close to {z = 0}, and away from
{r = 1}, we define x1 = x0 + zα/βez , where β comes from step 5 of Section 7.3.1.
If x0 is close to {z = 0} and {r = 1}, we use step 6 of Section 7.3.1: for any outward
direction ν, ∂2u/∂ν2 has a sign. Hence moving x0 in the direction of ν increases u0
and we can find a suitable x1.

Estimating the momentum

We now prove an estimate of the momentum L in terms of F0. The difficulty in the
proof is that near z = 0, u0 vanishes, this time on a set of infinite measure. We have
to treat this region differently from the 2D case.

Lemma 7.26. Let R ≥ 2, c > 0, and let u ∈ H1(�R) satisfying (7.59) be such that
w = u

u0
satisfies (7.74). Then there exists a constant K independent of u, R, and c

such that

|L(w, �R)| ≤ K
(
F0(w, �R) +

√
F0(w, �R)

)
. (7.75)

Proof: We will use that p/u0 is bounded for r large and u0 − p is in L2(�). As
in Lemma 7.11, the fact that w satisfies (7.74), together with u0∇w ∈ L2(� \ B2),
implies that there exist ρ, φ ∈ H1(�R) such that ρ ≥ 1

2 and
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w = ρeiφ.

Using this equality in the definition of L, we obtain

L(w, ωR) =
∫

�R

i

2
u2

0 (w∂xw − w∂xw) =
∫

�R

u2
0ρ

2∂xφ.

Let α ∈ (0, 1) (which will be made precise below), and consider separately the
integrals over {r < 1 + α} ∩ �R and over {r > 1 + α} ∩ �R . The first one is dealt
with exactly as in the proof of Lemma 7.11, giving∣∣∣∣

∫
1<r<1+α

u2
0ρ

2∂xφ

∣∣∣∣ ≤ Kα3/2
√
F0(w, �R), (7.76)

where K depends only on u0.
Turning to the integral over {1 + α < r < R}, we use the same kind of trick:

∫
1+α<r<R

u2
0ρ

2∂xφ =
∫

1+α<r<R
u2

0(ρ
2 − 1)∂xφ +

∫
1+α<r<R

(u2
0 − p2)∂xφ

+
∫

1+α<r<R
p2∂xφ, (7.77)

where p = p(z) is the unique solution of (7.17). We consider separately the three
terms above: for the second term, we use that u0 − p ∈ L2 and u0

p ∈ L∞:

∣∣∣∣
∫

1+α<r<R
(u2

0 − p2)∂xφ

∣∣∣∣ ≤ 2

(∫
1+α<r<R

(u2
0 − p2)2

u2
0

) 1
2 (∫

�R

u2
0ρ

2∂xφ
2
) 1

2

≤ 2K
√

2F0(w, �R), (7.78)

with K =
(

1 +
∥∥∥ p

u0

∥∥∥
L∞(Bc

1+α
×(0,1))

)
‖u0 − p‖L2(�). Turning to the third term of

(7.77), we integrate by parts with respect to the first two space coordinates and get∣∣∣∣
∫

1+α<r<R
p2∂xφ

∣∣∣∣ =
∣∣∣∣
∫

r=1+α

p2φnx

∣∣∣∣ =
∣∣∣∣
∫

r=1+α

p2
(

φ − inf
r=1+α

φ

)
nx

∣∣∣∣
≤

∫ 1

0
p(z)2

(∫
r=1+α

|∇φ|2
) 1

2

dz

≤ K‖p‖L2(0,1)

(∫
r=1+α

p(z)2

u2
0

u2
0ρ

2|∇φ|2
) 1

2

≤ K‖p‖L2(0,1)

∥∥∥∥ p

u0

∥∥∥∥
L∞(Bc

1+α
×(0,1))

√
2F0(w, �R), (7.79)

for a suitable choice of α ∈
(

1
2 , 1

)
. Finally, we deal with the first term of (7.77):



190 7 Superfluid Flow Around an Obstacle

∣∣∣∣
∫

1+α<r<R
u2

0(ρ
2 − 1)∂xφ

∣∣∣∣ ≤
(∫

1+α<r<R
u2

0|∇φ|2
) 1

2
(∫

1+α<r<R
u2

0(ρ
2 − 1)2

) 1
2

≤
√

2F0(w, �R)

(∫
1+α<r<R

u2
0(ρ

2 − 1)2
) 1

2

. (7.80)

Collecting (7.80), (7.78), (7.79) allows to bound the term considered in (7.77),
and yields

∣∣∣∣
∫

1+α<r<R
u2

0ρ
2∂xφ

∣∣∣∣ ≤ K
√
F0(w, �R)

(
1 +

(∫
1+α<r<R

u2
0(ρ

2 − 1)2
) 1

2
)

. (7.81)

In order to bound the right-hand side of (7.81), we split the integral into an integral
over {β < z < 1} ∩ {1 + α < r < R} and an integral over {0 < z < β} ∩ {1 + α <

r < R}, for some β > 1
4 to be made precise below. The first one is dealt with using

the fact that u0 is bounded below:∫
1+α<r<R,

β<z<1

u2
0(ρ

2 − 1)2 ≤ K
∫

1+α<r<R,
β<z<1

u4
0(ρ

2 − 1) ≤ KF0(w, �R). (7.82)

The second one is treated as follows:∫
1+α<r<R,

0<z<β

u2
0(ρ

2 − 1)2 ≤ K
∫

1+α<r<R,
0<z<β

z2(ρ2 − 1)2. (7.83)

We now integrate by parts with respect to z, getting∣∣∣∣∣∣
∫

1+α<r<R,
0<z<β

z2(ρ2 − 1)2

∣∣∣∣∣∣ = 1

3

∣∣∣∣∣∣
∫

1+α<r<R,
z=β

z3(ρ2 − 1)2 −
∫

1+α<r<R,
0<z<β

z3(ρ2 − 1)ρ∂zρ

∣∣∣∣∣∣
≤ K

β

∫
1+α<r<R,

z=β

u4
0(ρ

2 − 1)2

+K

⎛
⎝∫

1+α<r<R,
0<z<β

u4
0(ρ

2 − 1)2

⎞
⎠

1
2
⎛
⎝∫

1+α<r<R,
0<z<β

u2
0|∇ρ|2

⎞
⎠

1
2

≤ K

β

∫
1+α<r<R,

z=β

u4
0(ρ

2 − 1)2 + KF0(w, �R). (7.84)

Here, we point out, as in the proof of Lemma 7.11, that β may chosen greater than 1
4

and such that
∫

1+α<r<R,
z=β

u4
0(ρ

2 − 1)2 ≤ 16F0(w, �R). Hence, the right-hand side of

(7.83) is bounded by KF0(w, �R). Inserting this estimate in (7.81) gives∣∣∣∣
∫

1+α<r<R
u2

0ρ
2∂xφ

∣∣∣∣ ≤ K
(√

F0(w, �R) + F0(w, �R)
)

.
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This, together with (7.76), concludes the proof of (7.75).

The result above allows us to prove the following:

Proposition 7.27. There exist δ1 > 0 and K > 0 such that for all R ≥ 2, all δ ≤ δ1,
and all c ∈ (0, K

√
δ), any solution uc,R of (7.58) with boundary conditions (7.59)

satisfies F0

(
uc,R
u0

, �R

)
< δ. In addition, uc,R is a solution of

�u − 2ic∂x u + (1 − |u|2)u = 0 in �R . (7.85)

Proof: Let c < c0 (where c0 is defined in Lemma 7.22), δ ≤ 1, and let uc,R be a
solution of (7.58). Applying Lemma 7.22 and Lemma 7.24, we find that there is a
constant K1 > 0 independent of R, c, and δ such that if w = uc,R

u0
, then ‖∇w‖∞ ≤

K1. Hence, applying Lemma 7.25, we find that there exists some δ1 > 0 independent
of R, c, and δ such that if δ ≤ δ1, F0(w) ≤ δ and w satisfies (7.39).

We want to show that the constraint is not active. We apply Lemma 7.26 and find
that for some constant K2 independent of R, c, and δ, we have |L(w)| ≤ K2(F0(w)+√
F0(w)) ≤ 2K2

√
F0(w). Assume that the minimum of Fc is achieved by some w

such that F0(w) = δ. This implies that

Fc(w) ≥ δ − 2cK2
√

δ.

Now, we may also apply Lemma 7.22 with δ
2 instead of δ. We thus obtain w̃ = ũc,R

u0

such that ũc,R is a solution of problem (7.58), F0(w̃) ≤ δ
2 , and all the estimates

above are valid with δ
2 instead of δ. This implies that

Fc(w̃) ≤ δ

2
+ cK3

√
2δ.

But w̃ is also a test function for problem (7.58); hence Fc(w̃) ≥ Fc(w), which
implies

δ

2
+ cK3

√
2δ ≥ δ − 2cK2

√
δ, and hence cK4 ≥

√
δ.

If c <
√

δ
K4

, we reach a contradiction. This implies that for the minimizer, F0(w) < δ,
so that the constraint in (7.58) is not active, and the Lagrange multiplier must be zero:
uc,R satisfies (7.85).

End of the Proof of Theorem 7.16

We now conclude the proof of Theorem 7.16. We apply Proposition 7.12, and find
that for some c0 = K

√
δ1, there exists a solution uc,R of (7.85) with boundary

conditions (7.59). In addition, this function satisfies

F0

(
uc,R

u0

)
≤ δ, ‖uc,R‖W 1,∞(�R) ≤ K , (7.86)
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for some constant K independent of R. We thus can extract weak convergence in
H1

loc and strong convergence in L4
loc, allowing us to pass to the limit in the energy

bound above and in the equation.

The fact that this solution uc is vortex-free comes from the fact 1
2 ≤

∣∣∣ uc
u0

∣∣∣ ≤ 3
2 ,

and it also has finite energy, a property inherited from uc,R .
The convergence part is proved exactly in the same way as in the proof of

Theorem 7.4, using the uniqueness of u0 to obtain convergence in L∞
loc(�), and

Lemma 7.28 below to deal with infinity.
There remains only to prove the uniqueness part of Theorem 7.16, namely, that

∀M , ∃c0 such that for c ≤ c0, there is a unique solution uc of (7.14)-(7.15) with
F0(uc/u0) ≤ M . The proof uses the nondegeneracy of u0 in the same spirit as the
proof of Lemma 7.22. It goes by contradiction, assuming that there are two such
sequences as c tends to 0. We prove that they both tend to u0 using the uniqueness
result of Theorem 7.14 and that their renormalized difference tends to a solution
of the linearized problem at u0 or p(z), which contradicts the nondegeneracy of u0
and p(z).

Limit at infinity

We prove here the analogue of Lemma 7.13:

Lemma 7.28. Let M > 0, and let uc be a solution of (7.14)–(7.15) such that
F0(

uc
u0

) ≤ M. Assume in addition that the boundary data ψc in (7.15) converges
to 1 at infinity. Then,

lim
r→∞ uc(x) = p(z), (7.87)

where p is the solution of (7.17). Moreover, this limit is uniform with respect to
c → 0.

Note that according to Lemma 7.13, it is always possible to impose the condition
above on ψc.

Proof: We use again the notation w = uc
u0

. Hence, we know that (7.87) is true on
{z = 1}. Pointing out that the proof of Lemma 7.24 applies to the present case
(indeed, we use in this proof only the fact that uc,R is a solution of (7.73)), we know
that ∇w ∈ L∞(�). Hence, using standard elliptic estimates, we infer that D2w ∈
L∞(� ∩ {z > α}), for any α > 0. This, together with the fact that u0∇w ∈ L2(�),
clearly implies that the function

f (x, y) =
∫ 1

α

u2
0|∇w|2(x)dz

converges to zero as (x, y) goes to infinity. Now, |w(x, y, z) − ψc(x, y)| ≤√
1−z
z

(∫ 1
z u2

0|∇w|2
)1/2

, so that w converges to 1 at infinity, uniformly on
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� ∩ {z > α}, for any α > 0. We then note that u0 converges to p(z) at infinity
and that |uc| + |u0| ≤ K z for some constant K to obtain (7.87).

The fact that this limit is uniform with respect to c → 0 is proved by contra-
diction: assuming that the limit is not uniform, we have a sequence cn → 0 and
a sequence xn → ∞ such that |ucn (xn) − p(zn)| > ε, for some ε > 0. Consid-
ering the sequence ũn(x) = ucn (x + xn), we see that it is bounded in W 1,∞ and
thus converges in L∞

loc to some function u that satisfies (7.64)–(7.65). In addition,
Fp(u/p) ≤ δ. Applying Remark 7.21, we find that u = p, which is a contradiction.
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Further Open Problems

Many open problems have been described in the course of the book, but we present
some extra ones in this chapter, corresponding to new directions.

8.1 Setting in the whole space for the Thomas–Fermi regime

The analysis described in Chapters 3, 4, 6 sets the problem in the bounded domain
D = {ρTF > 0}. But the original problem consists in minimizing the energy in the
whole space:

Eε(u) =
∫

Rn

1

2
|∇u|2 − ��� × r · (iu, ∇u) + 1

4ε2

(
(|u|2 − ρTF(r))2 − (ρTF(r)−)2

)
(8.1)

under
∫

Rn |u|2 = 1, when n =2 or 3 and (ρTF)− is the negative part of ρTF.

8.1.1 Three-dimensional problem

For n = 3, there are no results about of the properties of the minimizers of Eε in R3.

8.1.2 Two-dimensional problem

For n = 2, the problem has been addressed by Ignat–Millot [80, 81] for ρTF =
ρ0 − x2 − α2 y2. They prove that in R2 \ D, |u| decays exponentially fast and the
properties that they obtain on vortices are only in D. Indeed, energetically favorable
vortices are located close to the origin. Information in R2 \ D is missing: we do not
know whether |u| is small and does not vanish or whether u has vortices in this small
density region.

Open Problem 8.1 There exists a constant C such that for � < C, minimizers of
Eε do not have vortices in R2.
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This would require other tools than energy estimates.
The issue is to understand whether vortices start to exist in R2 \D and for which

value of the velocity. Do they appear on a circle in this low-density region?

8.1.3 Painlevé boundary layer

A first step towards the analysis in the low-density region would be to obtain more
information on the density profile ηε, which is the minimizer of Eε for � = 0.
We know that η2

ε is close to (ρTF)+. A lower bound for ηε in R2 \ D would
be helpful. This would require us to prove that close to ∂D, ηε(x) behaves like
ε1/3 p(d(x, ∂D)/ε2/3), where p is the solution of

p′′ + (2s
√

ρ0 − p2)p = 0, p(s) →
s→−∞ 0, p(s) ∼

s→∞

√
2
√

ρ0s. (8.2)

One may hope to use sub- and supersolution arguments.

8.1.4 Vortices in the hole

If D = {ρTF > 0} is an annulus, then the understanding of vortices in the low density
region also concerns the inner ball B. The study of the minimization of Eε in D leads
to the existence of a circulation for u/|u| on ∂ B. A natural question is whether the
vortices exist in B under the shape of a giant vortex (single point where u vanishes)
or whether u vanishes at isolated zeroes close to the origin in this region of low
density. Numerical simulations do not help.

8.2 Other scalings

Other regimes than the small-ε limit are of interest for two-dimensional condensates.
When ε is small, the vortex cores are small, while when ε is large, the vortex cores
get large and multiple-degree vortices can get stabilized. We go back to the initial
scaling of the energy (1.2) and define

EG(u) =
∫

R2

1

2
|∇u|2 − � × x · (iu, ∇u) + 1

2
V (x, y)|u|2 + G|u|4 (8.3)

under
∫

R2 |u|2 = 1, where G is our parameter and V (x, y) = x2 + y2, for instance.
When G = 0, the analysis in Chapter 5 leads to a very precise description of the
critical points of E0: the eigenstates can be labelled by a radial number n (number of
nodes) and a quantum number q (degree). The eigenenergies are (1−�)q + (1+n).
We shall concentrate on the states with no radial nodes because they have the lowest
energy for a given value of the angular momentum q. When � is less than 1, the
ground state is for q = 0, while for � = 1, all the states are degenerate. When G
is small, the interaction energy can be considered as a perturbation. The degeneracy
at � = 1 is lifted: the critical frequencies �q for which the minimizer has a total
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degree-q split. It turns out that wave functions that are superpositions of states with
different qi generate an array and have less interaction energy than the pure multiply
quantized eigenstate uq with q = ∑

i qi .
Nevertheless, for potentials stronger than harmonic, that is, V (x, y) = xs + ys

with s > 2 or V (r) = r2 + kr4, the situation is different. In the noninteracting
case G = 0, pure multiply quantized vortex states have a smaller energy than any
superposition of eigenstates having the same total angular momentum or degree.
This persists for finite and small G. Numerical simulations have been performed in
[82, 105] and bifurcation diagrams are analyzed. No mathematical results have been
proved in this regime, where the use of perturbation theory could be helpful.

8.3 Other models

Experiments are moving fast and there are many possible directions of work. We
highlight a few of them here with appropriate references.

8.3.1 Optical lattices

There are experiments in which several condensates are confined in an array gener-
ated by an optical potential created by a standing laser wave. In this framework, the
trapping potential V (x) in (1.1) has to be modified to include the magnetic harmonic
potential as before and the optical potential

V (x) = Vh + Vo = (x2 + α2 y2 + β2z2) + v0 sin2
(

2π

λ
z

)
.

The optical potential produces a one-dimensional array of wells separated by λ/2.
The quadratic expansion of the optical potential around the local minima gives rise to
an additional harmonic potential with frequency

√
v02π/λ. If this is much larger than

β, the magnetic harmonic trapping in the z direction can be neglected. Depending on
the values of λ and v0, equivalent of tunnelling phenomena can be achieved giving
rise to collective effects. This is a first experimental step towards Josephson effects,
which have just been observed [18]. We refer to [95, 120].

8.3.2 Multicomponent condensates

One may consider a coupled model between multicomponent or spinor Bose–
Einstein condensates. It leads to two coupled Gross–Pitaevskii equations for which
many patterns have been observed. We refer to [31, 88] for details.

8.3.3 Condensate and noncondensed gas

The Gross–Pitaevskii energy is derived to model the condensate at zero tempera-
ture. At a higher temperature, a nonnegligible fraction of the atoms is no longer is
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the lowest energy state but is excited. They make up what is called the normal gas
or thermal gas. The description of the condensate is then an open question. Some
authors believe that the Gross–Pitaevskii equation still provides a good description
of the whole system: condensed and noncondensed gas [30, 102]. Others [153, 156]
have proposed a model that involves coupled equations for the condensate and the
noncondensed gas that is a coupled system between the Gross–Pitaevskii equation
on the one hand and Boltzmann equations on the other hand.

8.3.4 Fermi gases

Two–component Fermi gases have been achieved experimentally and can exhibit su-
perfluid properties. In the superfluid regime, one expects that a mean-field descrip-
tion, as in the case of bosons, is appropriate. One of the major differences relies on
the coefficient a, which is fixed by interaction in the case of bosons. In the Fermi
gas of interest, there are only two populated spin components, up and down. The
interaction between these two is characterized by the s wave interspecies scattering
length a. By applying a magnetic field to a gas of ultracold atoms, it is possible
to tune the strength and the sign of a [38]. This phenomenon, known as Feshbach
resonance, offers the possibility to study the crossover between a molecular Bose–
Einstein condensate and a state described by the Bardeen–Cooper–Schrieffer theory
[39].

There is an equation for the wave function describing the relative motion of a
spin-up atom with respect to the nearest spin-down atom [126]. When a > 0, the
solution describes a molecular bound state or dimer. The small-a case corresponds
to a Bose condensate of molecules. On the other hand, in the case a < 0, there are no
bound states and one expects the well-known Bardeen–Cooper–Schieffer model for
superconductivity to be valid. The case |a| = ∞ is called the unitary gas limit. We
refer to the recent overview of [121] for references and prospects of experiments.
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