
A Modern Treatment of the 15 PuzzleAaron F. Archer1 IntroductionIn the 1870's the impish puzzlemaker Sam Loyd caused quite a stir in theUnited States, Britain, and Europe with his now-famous 15-puzzle. In itsoriginal form, the puzzle consists of �fteen square blocks numbered 1 through15 but otherwise identical and a square tray large enough to accommodate16 blocks. The 15 blocks are placed in the tray as shown in Figure 1, withthe lower right corner left empty. A legal move consists of sliding a blockadjacent to the empty space into the empty space. Thus, from the startingplacement, block 12 or 15 may be slid into the empty space. The object ofthe puzzle is to use a sequence of legal moves to switch the positions of blocks14 and 15 while returning all other blocks to their original positions.Loyd writes of how he \drove the entire world crazy", and that \A prizeof $1,000, o�ered for the �rst correct solution to the problem, has never beenclaimed, although there are thousands of persons who say they performedthe required feat." He continues,People became infatuated with the puzzle and ludicrous tales aretold of shopkeepers who neglected to open their stores; of a dis-tinguished clergyman who stood under a street lamp all througha wintry night trying to recall the way he had performed thefeat. . . . Pilots are said to have wrecked their ships, and engi-neers rush their trains past stations. A famous Baltimore editortells how he went for his noon lunch and was discovered by hisfrantic sta� long past midnight pushing little pieces of pie aroundon a plate! [9]The reason for this hysteria, of course, is that Loyd's puzzle has no so-lution. Each move causes a transposition of the 16 blocks (where the empty1
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�Figure 1: The starting position for the 15-puzzle. The shaded square is leftempty.square is considered to contain a blank block), and for the blank to end upin the lower right corner requires an even number of moves, so the resultingpermutation is even. But the desired end placement is an odd permutationof the original, and is hence unobtainable. One must assume Sam Loyd knewthis, and from there one can only conjecture how much amusement he derivedfrom driving the American public insane.The puzzle has inspired a sizable number of articles and references inthe mathematical literature. The �rst of these is a pair of articles publishedin the American Journal of Mathematics in 1879 by W.W. Johnson [7] andW.E. Story [13]. Johnson's article is an explanation of why odd permutationsof the puzzle are impossible to obtain, while Story's article proves that alleven permutations are possible. The editors were apparently so apprehensiveand defensive about publishing articles on what some might charge to be afrivolous topic that they attached the following justi�cation to the end ofStory's article:The \15" puzzle for the last few weeks has been prominentlybefore the American public, and may safely be said to have en-2



gaged the attention of nine out of ten persons of both sexes andof all ages and conditions of the community. But this would nothave weighed with the editors to induce them to insert articlesupon such a subject in the American Journal of Mathematics, butfor the fact that the principle of the game has its root in whatall mathematicians of the present day are aware constitutes themost subtle and characteristic conception of modern algebra, viz:the law of dichotomy applicable to the separation of the terms ofevery complete system of permutations into two natural and in-defeasible groups, a law of the inner world of thought, which maybe said to pre�gure the polar relation of left and right-handedscrews, or of objects in space and their re
exions in a mirror. Ac-cordingly the editors have thought that they would be doing nodisservice to their science, but rather promoting its interests byexhibiting this �a priori polar law under a concrete form, throughthe medium of a game which has taken so strong a hold uponthe thought of the country that it may almost be said to haverisen to the importance of a national institution. Whoever hasmade himself master of it may fairly be said to have taken his�rst lesson in the theory of determinants. [13, p. 404]The puzzle is a popular topic for books on recreational mathematics ormathematical potpourri, such as [1], [2], [4], [5], [9], and [12], most of whichuse it as an example to illustrate the consequences of even and odd permuta-tions, as does [14]. Various sources have suggested variants of the 15-puzzle,including [3], [4], [6], [8], [10], and [15]. Today the puzzle appears on somecomputer screen savers, and a version is distributed with every Macintoshcomputer.Most references to the 15-puzzle explain the impossibility of obtaining oddpermutations and many state Story's result that every even permutation isindeed possible, but this author found only three proofs. R.M. Wilson [15]published a more general result in 1974, which we discuss at the end of thisarticle. Ball and Coxeter's book [1] refers to [10] for a proof, but the articledoes not ful�ll the promise. The arcane terminology of Story's article [13]renders it di�cult to wade through, and of course it does not take advantageof modern notation developed since then. Spitznagel [11] published a proofin 1967, but later wrote that \Over the years there have been published anumber of unnecessarily complicated explanations of the puzzle. I confess3



that I myself once published one of these overly complicated accounts" [12].Indeed, Herstein and Kaplansky [5] write that \No really easy proof seemsto be known." This article intends to rectify that de�ciency.2 SolutionIt should be noted that the proof provided here was developed independentlyof the previous proofs, but coincidentally shares some ideas with Story'sproof [13].We call each of the 15 pieces blocks, and the 16 di�erent squares on theboard we call cells. For reasons that soon become apparent, we numberthe cells in the snakelike pattern shown in Figure 2. We can think of theempty cell as being occupied by a blank block. Each legal move then consistsof \moving the blank", that is, exchanging the blank block with one of itshorizontal or vertical neighbors. A placement is a bijection from the set ofblocks (including the blank) to the set of cells|in other words, a snapshot ofthe board between moves. Given an initial placement, we wish to determinewhat other placements are attainable through a sequence of legal moves.Notice that by moving the blank block along the snaking path of Figure 2we can move the blank to any cell without changing the order of the remainingblocks along this path. This leads us to de�ne an equivalence relation on theset of placements, two placements being equivalent if we can obtain one fromthe other by moving the blank along the snaking path. Each equivalence classis called a con�guration, and contains 16 placements, one for each cell theblank can occupy. If block i occupies cell j and the blank occupies a highernumbered cell, then we say block i is in slot j; otherwise it is in slot (j � 1).Refer to Figure 3 for an example. All placements in a given con�gurationhave the 15 blocks in the same slots, so we can denote a con�guration by[a1; : : : ; a15], where ai is the slot that block i occupies in the con�guration.Every move of the blank block e�ects a permutation on the slots occupiedby the blocks. For example, moving the blank from cell 10 to cell 15 causesthe permutation (10, 11, 12, 13, 14) because the block originally in cell 15(slot 14) is moved to cell 10 (which becomes slot 10) and the blocks in cells 11through 14 are bumped up one slot. A con�guration [a1; : : : ; a15] subjectedto the permutation � is transformed into the con�guration [a1; : : : ; a15]� =[a1�; : : : ; a15�]; since our permutations act on the right, we multiply themleft to right. See Figure 3 for an example.4
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16 15 14 13Figure 2: The dashed line and the numbers in the corner of each cell indicatea special ordering of the cells that we use to de�ne equivalence classes ofplacements.
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Figure 3: The placement shown here corresponds to the con�gu-ration C = [1; 2; 3; 4; 8; 7; 6; 5; 14; 12; 13; 10; 15; 11; 9]. Since the ini-tial placement of Figure 1 corresponds to the con�guration I =[1; 2; 3; 4; 8; 7; 6; 5; 9; 10; 11; 12; 15; 14; 13], subjecting the initial con�gurationto the permutation � = (9; 14; 11; 13)(10; 12) yields C. This is an even per-mutation, so by Theorem 3, C is obtainable from I.
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Let �i;j denote the permutation achieved by moving the blank from celli to cell j. Then clearly �i;i+1 is the identity, and �j;i = ��1i;j . This leaves9 permutations for us to work out. These are tabulated in Table 1. Thekey point is that one can move the blank along the snaking path of Figure 2to any cell without changing the con�guration. Therefore, the �rst ninepermutations listed in Table 1 and their inverses may be applied in any order,so the problem reduces to identifying the subgroup of S15 (the symmetricgroup on the 15 slots) generated by these permutations. We prove that thesepermutations generate A15 (all even permutations).Lemma 1. For n � 3 the 3-cycles generate An.Proof. By de�nition, all elements of An can be written as a product of aneven number of transpositions. If a; b; c; and d are distinct, then (a; b)(c; d) =(a; b; c)(a; d; c), (a; b)(b; c) = (a; c; b), and (a; b)(a; b) = id.For n � 5, Lemma 1 also follows directly from the fact that An is simple,since the set of 3-cycles is closed under conjugation. Let us call a 3-cycleconsecutive if it is of the form (k; k + 1; k + 2).Lemma 2. For n � 3, the consecutive 3-cycles f(1; 2; 3); (2; 3; 4); : : : ; (n �2; n� 1; n)g generate An.Proof. Since the 3-cycles generate An, it su�ces to show that the consecutive3-cycles generate all 3-cycles. This is trivial for n = 3. For n � 4 wesee by induction that we can generate all 3-cycles not containing both 1and n. To generate (1; x; n), let y 2 f1; : : : ; ngnf1; x; ng. Then (1; x; n) =(y; x; n)(1; x; y). Of course, (1; n; x) = (1; x; n)2.Theorem 3. The cycles listed in Table 1 generate A15.Proof. Since all the cycles are odd, they are even permutations, so theygenerate a subgroup of A15. Note that for any permutation � we have��1(a1; : : : ; ak)� = (a1�; : : : ; ak�). Thus,(1; 2; : : : ; 7)�n(3; 4; 5)(1; 2; : : : ; 7)n yields (1; 2; 3); : : : ; (5; 6; 7);(5; 6; : : : ; 11)�n(7; 8; 9)(5; 6; : : : ; 11)n yields (5; 6; 7); : : : ; (9; 10; 11); and(9; 10; : : : ; 15)�n(11; 12; 13)(9; 10; : : : ; 15)n yields (9; 10; 11); : : : ; (13; 14; 15)as n assumes the values �2;�1; 0; 1, and 2. This constitutes all consecutive3-cycles in S15, so by Lemma 2 it generates A15.7



�1;8 = (1; 2; 3; 4; 5; 6; 7)�2;7 = (2; 3; 4; 5; 6)�3;6 = (3; 4; 5)�5;12 = (5; 6; 7; 8; 9; 10; 11)�6;11 = (6; 7; 8; 9; 10)�7;10 = (7; 8; 9)�9;16 = (9; 10; 11; 12; 13; 14; 15)�10;15 = (10; 11; 12; 13; 14)�11;14 = (11; 12; 13)�n;n+1 = id; n = 1; 2; : : : ; 15�i;j = ��1j;i for all relevant i > jTable 1: A summary of all possible permutations of slots attained by movingthe blank block. Moving the blank from cell i to cell j e�ects the permutation�i;j.Thus, given any two placements Pl1 and Pl2 belonging to con�gurationsCf1 and Cf2, respectively, Pl2 is obtainable from Pl1 if and only if Cf2 is aneven permutation of Cf1. Stated directly in terms of the placements, we seethat if Pl1 and Pl2 have the blank in the same cell then Pl2 is obtainablefrom Pl1 if and only if Pl2 is an even permutation of the 15 numbered blocksin Pl1. Let n be the number of moves the blank cell in Pl1 is away from theblank cell in Pl2. Since each move of the blank block causes a transpositionof two blocks, then for n odd (respectively even) Pl2 is obtainable from Pl1if and only if Pl2 is an odd (respectively even) permutation of the 16 blocksin Pl1.3 GeneralizationsWhat follows is, in some sense, the broadest generalization of the 15-puzzle.Given any connected graph on n vertices, we can label the vertices with nlabels, one of which we call the blank label. Each move consists of interchang-ing the blank label with the label on an adjacent vertex. We then ask whichof the n! labelings may be obtained from a given initial labeling through asequence of moves. More precisely, we ask what permutations of the (n� 1)8



Figure 4: The graph P4 � P4.ordinary labels (a subgroup of Sn�1) can be obtained by a sequence of movesthat returns the blank to its original vertex v (since the subgroups obtainedfor di�erent choices of v are isomorphic). The 15-puzzle is a special instanceof this, corresponding to the graph P4�P4 (the cartesian product of the pathon four vertices with itself) depicted in Figure 4. The vertices correspondto cells, the labels (not depicted) correspond to blocks, and the edges showwhich cells are adjacent.The crux of the method presented in Section 2 lies in inducing equivalenceclasses and de�ning slots by the position of the blank along a hamiltonianpath (a path that visits every vertex of the graph exactly once). The methodis applicable to any graph containing a hamiltonian path, using any suchpath. Thus, for the 15-puzzle we could have used a spiral instead of theserpentine pattern of Figure 2. Another example is the Petersen graph.Numbering the vertices as in Figure 5, we see that our desired group isgenerated by �1;9; �1;5; �2;7; �3;10; �4;8; and �6;10, where �i;j = (i; i+1; : : : ; j�1)is the permutation of slots e�ected by moving the blank label from vertex ito vertex j. Some calculation shows that the group generated is all of S9;[15] explains why this is no coincidence.We now discuss the general case, where the graph may or may not containa hamiltonian path. If the graph contains a cut vertex v then none of thelabels other than the blank may be moved across v, so the problem decom-9
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Figure 5: For the famous Petersen graph, each labeling is obtainable fromevery other by a sequence of legal moves. The vertices are numbered toindicate a hamiltonian path.
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Figure 6: The graph �0.poses into two parts. Thus, it su�ces to consider graphs containing no cutvertices.In [15], R.M. Wilson solves this case completely. Wilson's amazing resultis that with the exception of cycles Cn and the graph �0 depicted in Figure 6,the group contains An�1. Clearly the group contains an odd permutationif and only if the graph contains an odd cycle, that is, the graph is notbipartite. So for bipartite graphs the group is exactly An�1, and otherwiseit is all of Sn�1. Thus, aside from the two exceptional cases, either exactlyhalf or all of the n! labelings are obtainable, depending on whether or notthe graph is bipartite. For �0, the desired group is PGL2(Z=5Z) acting onthe projective line over Z=5Z (a group of order 120 acting 3-transitively ona set of six elements), yielding six inequivalent labelings. For Cn, the groupis h(1; 2; : : : ; n � 1)i, yielding (n � 2)! inequivalent labelings. The existenceof such a simple complete characterization is surprising. However, Wilson'sproof, while elegant, requires considerably more sophisticated mathematicsthan the simple and elementary proof provided here for the special case ofthe 15-puzzle.4 AcknowledgmentsThe author thanks Professors Alan J. Goldman and Arthur T. Benjaminfor bringing this problem to his attention, and the latter for many helpfulsuggestions. Author supported by the Fannie and John Hertz Foundation.11



References1. W.W.R. Ball and H.S.M. Coxeter, Mathematical Recreations and Essays,12th ed., U. of Toronto Press, Toronto and Bu�alo, 1974, pp. 313-316.2. J.D. Beasley, The Mathematics of Games, Oxford U. Press, Oxford andNew York, 1989, pp. 80-81.3. A.L. Davies, Rotating the �fteen puzzle, Math. Gazette 54 (1970) 237-240.4. M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversionsfrom Scienti�c American, U. of Chicago Press, Chicago, 1971, pp. 64-70.5. I.N. Herstein and I. Kaplansky,Matters Mathematical, Chelsea, New York,1978, pp. 114-115.6. S. Hurd and D. Trautman, The knight's tour on the 15-puzzle,Math. Mag.66 (1993) 159-166.7. W.W. Johnson, Note on the \15" puzzle, Amer. J. Math. 2 (1879) 397-399.8. H. Liebeck, Some generalizations of the 14-15 puzzle, Math. Mag. 44(1971) 185-189.9. S. Loyd, Mathematical Puzzles of Sam Loyd: Selected and Edited by Mar-tin Gardner, Dover, New York, 1959, pp. 19-20.10. H.V. Mallison, An array of squares, Math. Gazette 24 (1940) 119-121.11. E.L. Spitznagel, Jr., A new look at the �fteen puzzle, Math. Mag. 40(1967) 171-174.12. E.L. Spitznagel, Jr., Selected Topics in Mathematics, Holt, Rinehart andWinston, New York, 1971, pp. 143-148.13. W.E. Story, Note on the \15" puzzle, Amer. J. Math. 2 (1879) 399-404.14. F.J.W. Whipple, The sign of a term in the expansion of a determinant,Math. Gazette 13 (1926) 126.15. R.M. Wilson, Graph puzzles, homotopy, and the alternating group, J.Combin. Theory (Series B) 16 (1974) 86-96.12


