![](/media/filer_public/9b/ae/9bae4b98-4a66-4e6f-9d48-f116eb8007cb/tyurin.jpg)
Николай Андреевич Тюрин
Проективная геометрия для школьников
Н. А. Тюрин планирует провести 2 занятия.
Доступны 2 видеозаписи курса.
Удивительным образом в современной школьной программе отсутствуют основы проективной геометрии при том, что математический анализ представлен достаточно внушительно: от школьников требуется и производные уметь вычислять (зачастую не представляя себе что это на самом деле такое), и интегралы основных функций знать (оставляя за скобками тот факт, что интегрируют вообще-то не функции, а формы). В 19 веке ситуация с математическим образованием была иной: будущий Святитель Игнатий (Брянчанинов) в инженерной школе проходил основы проективной геометрии, о чем можно узнать из его позднейших богословских трудов. А именно, говорится там о том, что в видимой конечной части пространства линии могут казаться непересекающимися, однако где-то за горизонтом они все-таки сойдутся в невидимой земному глазу точке. Классическая традиция преподавания (смотри, например, учебник Адамара по геометрии) предполагает в качестве источника проективной геометрии известные теоремы Дезарга, Паппа, Паскаля, Брианшона, и именно в таком виде она появлялась и проявлялась в системе образования.
Мы хотели бы восполнить этот пробел и обсудить простые сюжеты из проективной геометрии. Наш изначальный посыл будет таким: проeктивное пространство возникает как естественное пополнение аффинного пространства, которое делает мир более однородным. Например, если рассмотреть пару кривых на аффинной плоскости, задаваемых полиномиально, и задаться вопросом о том, сколько точек пересечения имеется, то ответ существенно зависит от “типичности” кривых. Простейший случай — пары прямых, которые в общем случае пересекаются в одной точке, но при этом прямые могут и не пересекаться. Более сложный случай — кривые степени 2; теорема Безу подсказывает, что точек пересечения должно быть 4, однако две окружности пересекаются по паре точек или не пересекаются вовсе (случай концентрических окружностей). Таким образом, для аффинной плоскости ответы существенно зависят от их взаимного расположения, как в простейшем случае пары прямых. Проективная геометрия отличается прежде всего однородностью ответов, однако при этом сама по себе требует однородности соответствующих полиномов для того, чтобы кривые на проективной плоскости были бы корректно определены.
Мы обсудим разные подходы к определению проективных пространств, прилагая простые геометрические наблюдения, помогающие представить себе наглядно как сами эти пространства, так и их естественные подмножества, называемые алгебраическими многообразиями. Одним из базовых понятий в проективной геометрии является двойственность, и мы обсудим простейшие примеры двойственных объектов. Наконец, мы обсудим основные свойства двумерной квадрики в трехмерном комплексном проективном пространстве и решим одну из классических задач исчислительной геометрии.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Николаевич Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.