Александр Александрович Гайфуллин
Гомологические сферы и алгоритмическая неразрешимость в топологии
А. А. Гайфуллин планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Одной из ключевых проблем, определивших развитие топологии и геометрии в 20-м веке, стала знаменитая гипотеза Пуанкаре, утверждающая, что всякое односвязное компактное трехмерное многообразие без края топологически эквивалентно (строго говоря, гомеоморфно) стандартной трехмерной сфере. О трехмерном многообразии можно думать, как об объекте, который локально (в окрестности каждой точки) устроен как наше обычное трехмерное пространство. Ключевым в формулировке гипотезы является слово «односвязное», означающее, что в рассматриваемом многообразии всякая замкнутая кривая (петля) может быть непрерывно стянута в точку или, что эквивалентно, заклеена топологическим диском.
Гипотеза Пуанкаре была доказана в серии замечательных работ Г.Я.Перельмана 2002-2003 годов. Однако содержание курса будет связано не с доказательством этой гипотезы, а с ее возникновением. Изначально (в 1900 году) Анри Пуанкаре сформулировал свою гипотезу неправильно. Вместо условия односвязности он потребовал выполнения лишь более слабого условия, а именно, того, что каждая замкнутая кривая в многообразии должна заклеиваться ориентированной двумерной поверхностью (не обязательно диском!). В 1904 году Пуанкаре сам нашел контрпример к изначальной версии своей гипотезы и уточнил ее формулировку. Этот контрпример - трехмерное многообразие, называемое с тех пор гомологической сферой Пуанкаре - будет главным объектом первой половины курса. Я расскажу о различных конструкциях сферы Пуанкаре, связанных с группой симметрии правильного икосаэдра, кватернионами, перестройками вдоль узлов и зацеплений, диаграммой Дынкина E8.
Вторая половина курса будет посвящена 4- и 5-мерным гомологическим сферам и их связям с теорией групп и теоремами об алгоритмической неразрешимости в топологии. Я расскажу о принадлежащей М.Керверу характеризации фундаментальных групп 5-мерных гомологических сфер, теореме А.А.Маркова (младшего) об алгоритмической неразрешимости проблемы гомеоморфности для четырехмерных многообразий и теореме С.П.Новикова об алгоритмической нераспознаваемости пятимерной сферы, а также об их более современных следствиях и открытых проблемах в этой области.
Пререквизиты: несмотря на наличие слова «гомологические» в названии, никакого знакомства слушателей с теорией гомологий предполагаться не будет. Мне понадобятся только одномерные и (во второй половине курса) двумерные гомологии, которые легко определяются без общей теории, и я расскажу все необходимые мне факты о них. Полезно (но не обязательно) знакомство слушателей с понятием фундаментальной группы и (на интуитивном уровне) с понятием многообразия. А вот что будет по-настоящему нужно, так это уверенное знакомство с основами теории групп (смежные классы, нормальные подгруппы, теорема о гомоморфизме, классы сопряженности, группы перестановок).
Видео лекции:
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Николаевич Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.