Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2021
  • Программа Айзенберг
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Антон Андреевич Айзенберг

Приложения конечных топологий

А. А. Айзенберг планирует провести 2–3 занятия.

Доступны 3 видеозаписи курса.

Доступны задачи к курсу: листок 1, листок 2, листок 3.

Необходимое правило курса наглядной топологии — не упоминать определение топологии. Потому что на интуитивном уровне совершенно непонятно, какое отношение системы открытых и замкнутых множеств имеют к разрезаниям ленты Мёбиуса, прогулкам по бутылке Клейна, выворачиванию сферы наизнанку и прочим прелестным фокусам. Для понимания большинства стандартных иллюстративных примеров требуется поверить, что топологические пространства — это подмножества в R^n, которые разрешается непрерывно деформировать. С этой точки зрения интересные топологические пространства обязаны быть бесконечными множествами. С бесконечными множествами невозможно работать алгоритмически, поэтому самая общая топология с приложениями не дружит. Этот курс будет не наглядным: в нем прозвучит определение топологии (хотя картинки тоже будут). Речь пойдет про конечные топологические пространства. С одной стороны, с такими пространствами можно работать на компьютере. С другой стороны, они могут иметь вполне содержательную топологию. Например, существует аналог окружности, состоящий из 4 точек, и аналог отрезка из 3 точек. Мы поговорим про понятие ядра конечной топологии и связанное с ним понятие сильного вдавливания, которое позволяет монотонно упрощать конечное пространство. Для привычных нам бесконечных пространств проверка гомотопической эквивалентности — задача трудная, и порой неразрешимая. Однако во вселенной конечных пространств верен прямо противоположный факт: два конечных пространства гомотопически эквивалентны в том и только том случае, когда они имеют одинаковые ядра. Различные вариации идеи сильного вдавливания в настоящее время становятся популярны в вычислительной топологии, об этом я тоже постараюсь рассказать.

План:

  1. 1. Топология. Симплициальные комплексы. Частично упорядоченные множества, диаграммы Хассе. Топология Александрова. Теоремы МакКорда для симплициальных и клеточных комплексов.
  2. 2. Гомеоморфизмы и гомотопические эквивалентности конечных пространств. Сильное вдавливание. Ядро топологии. Приложения. Если позволит время, я расскажу про анализ формальных понятий, и как на него можно смотреть топологически.

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО