Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2019
  • Программа Петров
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Леонид Александрович Петров

Замощения ромбиками и их случайные перестройки

Л. А. Петров планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Замощение — это представление одной фигуры в виде объдинения фигур из данного (обычно конечного) набора, без пробелов и перекрытий. Задачи о замощениях плоскости и других фигур часто очень нетривиальны, и возникают во многих областях математики. Мы будем заниматься замощениями многоугольников, нарисованных на треугольной решетке, ромбами трех типов. Каждый ромб в нашем наборе — объединение двух правильных треугольников, соседних по стороне, например как на картинке ниже.


Первым делом мы подсчитаем, сколькими способами можно замостить некоторые многоугольники, в том числе, шестиугольник (кстати, для общего многоугольника формула неизвестна). Число замощений шестиугольника дается красивой формулой МакМагона, которой больше ста лет. (В Кембриджском Университете Перси МакМагон, по некоторым источникам, соревновался с Рамануджаном в подсчете числа разбиений - МакМагон приводил точные значения, а Рамануджан пользовался асимптотической формулой.)

Подсчет замощений естественно обобщить, вводя дополнительные параметры. Производящие функции замощений некоторых многоугольников - это замечательные симметрические многочлены Шура, встречающиеся почти во всех областях математики.

Замощений данного достаточно большого многоугольника очень много (порядка экспоненты от площади). В конце 20 века, с появлением компьютеров, математики смогли увидеть, как выглядит замощение, выбранное совершенно случайно из этого гигантского набора:

Эти примеры вызвали новый интерес к замощениям, уже с вероятностной стороны, что привело к новым красивым результатам. Как на практике получить картинку случайного замощения? Нельзя просто так выписать все возможные замощения и выбрать одно из них  - на это не хватит памяти ни у одного компьютера. Оказывается, решение лежит в области "случайных перестроек" замощений - начинаем с одного, и случайно его меняем. Если это делать правильно, то после большого числа шагов получим искомую случайную картинку.

  1. 1. Замощения шестиугольника ромбиками трех типов. Различные описания замощений. Элементарный подсчет в частных случаях. Формула МакМагона и ее q-версия.
  2. 2. Уточненный подсчет замощений со многими параметрами. Рекуррентное соотношение. Многочлены Шура. Поведение больших случайных замощений.
  3. 3. Марковские цепи и обратимость.
  4. 4. Случайные перестройки замощений.

Для слушателей желательно знакомство с элементарной теорией вероятностей.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО