Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2018
  • Программа Тюрин
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Николай Андреевич Тюрин

Внеклассное чтение: "Математические методы классической механики" В.И.Арнольда

Н. А. Тюрин планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Если представлять себе выдающиеся произведения научной литературы как горные маршруты, уводящие в небо, то наш небольшой курс — не более чем прогулка с видом на далекие белоснежные вершины. Мы собираемся просмотреть видимые начала одного из красивейших маршрутов, уводящего далеко за облака, к высоким перевалам и вершинам классической механики. Очень скоро вчерашние школьники сами выйдут на этот маршрут, а пока .... давайте немного потренируемся.

1. Инфинитезимальная геометрия конфигурационного пространства

Необходимым на маршруте будет знание о том, откуда берутся векторные поля и дифференциальные формы. И поскольку мы готовимся к маршруту, проложенному В.И.Арнольдом, то в понимании этих геометрических объектов (а также в том, что такое дифференциальное уравнение) мы будем следовать ему.

2. От второго закона Ньютона к Гамильтоновой механике

Аристотель считал, что движение описывается дифференциальным уравнением первого порядка, возможно именно поэтому древние греки, прекрасно разбиравшиеся в конических сечениях, описывали движение небесных тел с помощью эпициклов. Ньютон описал движение дифференциальным уравнением второго порядка; понижая порядок и переходя от конфигурационного пространства к фазовому, можно представить все в простой и красивой форме.

3. Скобки Пуассона. Интегрируемые системы

Как нас учили на уроках физики в школе, решать задачи удобно через законы сохранения. В самом общем смысле этот принцип может быть сформулирован так: если физическая величина (= некоторая функция на фазовом пространстве) коммутирует с гамильтонианом (= выделенная функция на фазовом пространстве, определяющая движение системы) относительно кососимметрической операции (называемой скобками Пуассона), то эта величина является инвариантом движения и называется интегралом движения.

4. Классические механические системы на компактных фазовых пространствах

Главное отличие подхода В.И.Арнольда к классической механике по сравнению со "стандартными" физическими курсами в том, что он приложим к любому фазовому пространству, в том числе к случаю компактного фазового пространства (некоторые даже приписывают Арнольду обобщение классической механики на компактный случай, хотя очевидно что Дирак вполне разбирался в этом вопросе, вводя свои системы со связями). Этот путь выводит к началу другого маршруту на соседнюю, еще не пройденную вершину - симплектическую топологию.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО