
Георгий Борисович Шабат
Динамика многоугольников и сверхбыстрые приближения
Г. Б. Шабат планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Динамика на множестве многоугольников Π определяется отображением f:Π→Π, причём основной интерес представляют f-траектории Р↦f(Р)↦f(f(Р))↦f(f(f(Р)))↦… многоугольников Р∈Π.. Мы рассмотрим два таких отображения — на множестве прямоугольников и на множестве вписанных шестиугольников. В первом случае одна сторона прямоугольника f (Р) равна стороне квадрата с тем же периметром, что у Р, а другая - с той же площадью, что у Р. Во втором случае шестиугольник предлагается воспринимать как приближённый треугольник, который хотели описать вокруг окружности, но чуть-чуть промахнулись, и отображение f постепенно исправляет неточность, заменяя секущие на касательные.
Рассматриваемые конструкции роднит то, что все траектории с огромной скоростью приближаются к неподвижным точкам отображения f (квадрату и шестиугольнику, всё-таки выродившемуся в треугольник). Обе были тщательно изучены ещё в 19-м веке, Гауссом и рядом менее известных авторов. Многие понятия и результаты комплексного анализа, теории специальных функций и алгебраической геометрии были развиты при продумывании этих конструкций. Изначально соответствующие теоремы объяснялись с помощью загадочных подстановок в интегралах; для нас же их общее понимание достигается на основе концепций современной математики. В курсе будут даны приложения развитой теории к сверхбыстрому приближению числа и ультраэллиптических интегралов.
Для понимания основной части курса не надо знать ничего за пределами школьной программы, но надо быть готовыми заниматься довольно трудной математикой.
Г.Б.Шабат предполагает провести четыре занятия, сопровождаемых компьютерными демонстрациями.
Примерная программа.
- 1. Геометрические итерации и их экспериментальное исследование.
- 2. Эллиптические и ультраэллиптические интегралы.
- 3. Решётки периодов и изогении якобианов кривых.
- 4. Сверхбыстрые приближения. Обсуждение обобщений.
Материалы
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Николаевич Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.