
Александр Владимирович Гасников
Концентрация равномерной меры на сфере и приложение к безградиентным методам выпуклой оптимизации
А. В. Гасников планирует провести 2 занятия.
Доступны 2 видеозаписи курса.
В некоторых многомерных задачах теории вероятностей важную роль играет эффект концентрации меры. А именно, с ростом размерности оказывается, что случайная величина "в подавляющем большинстве случаев" принимает примерно одно и то же значение. Об этом не раз рассказывалось на ЛШСМ. Популярно об этом написано в замечательной книге В.А. Зорича "Математический анализ задач естествознания". Но как правило, в вводных текстах и курсах про концентрацию меры разбираются довольно простые (игрушечные) примеры.
В данном мини-курсе мы представим (и даже схематично докажем) нетривиальный пример задачи на концентрацию равномерной меры на поверхности евклидовой сферы. А именно, мы зафиксируем вектор u и для случайного вектора v на сфере будем рассматривать величину |v|p⟨u,v⟩— произведение p- нормы v и скалярного произведения u с v. Будет показано, что такая функция сконцентрирована около своего среднего значения (медианы)- это означает, что для большинства векторов, задающих точку на сфере, значение этой функции близко к среднему значению. Данное наблюдение позволяет практически бесплатно получать оценку на среднее значение этой функции на сфере.
В свою очередь, последняя величина играет важную роль в решении задачи, о которой ранее в ЛШСМ рассказывал В.Ю. Протасов "Как по значениям функции найти ее минимум?" С помощью полученной оценки среднего значения описанной выше функции будет показано, что для задач гладкой выпуклой оптимизации, у которых разреженное решение (много нулевых компонент в решении) можно получать оценки на число вычислений значения функции существенно лучшие, чем известные нижние оценки (А.С. Немировский, 1979). Противоречия тут нет, потому что было сделано дополнительное предположение о разреженной структуре решения (нижние оценки были получены без этого предположения).
Данный мини-курс про концентрацию меры и оптимизацию можно понимать, как идейное продолжение двух мини-курсов про оптимизацию и про концентрацию меры, прочитанных в прошлом году. Однако, слушать его можно независимо. От слушателей предполагается знакомство с основами дифференциального и интегрального исчисления и знание основ теории вероятностей. Впрочем, все конкретные необходимые факты планируется напоминать.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Николаевич Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.