
Лев Дмитриевич Беклемишев
Доказуемо рекурсивные функции
Л. Д. Беклемишев планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Вычислимая функция f = N --> N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение "для любого x существует y такой, что f(x)=y". В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения и сравнения между собой различных формальных теорий. Такой подход приводит к построению функций, имеющих катастрофически большой рост, и к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений.
Мы начнем с понятия машины Тьюринга и вычислимой функции. Затем мы разберемся в том, как формальная арифметика может говорить о вычислениях, и убедимся, что она фактически имеет свой "внутренний" язык программирования. Затем мы поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда мы выведем первую теорему Гёделя о неполноте.
Дальнейший рассказ пойдет о том, что можно сказать о классах доказуемо рекурсивных функций для конкретных теорий и о связанных с этим открытых проблемах в математической логике. На этом пути мы встретим различные фрагменты арифметики Пеано, иерархию Гжегорчика быстрорастущих функций, а также теоремы Париха и Парсонса-Минца, описывающие классы доказуемо рекурсивных функций для теорий, получающихся ограничением аксиомы индукции в арифметике.
Материалы
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Николаевич Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.