Алексей Кириллович Толпыго
Математические этюды. Игра Цзяньшицзы и обмотки тора. Как ускорить сходимость ряда? Элементы неевклидовой геометрии
А. К. Толпыго планирует провести 3 занятия.
Доступны 3 видеозаписи курса.
Как видно из заголовков, темы занятий достаточно разнообразны. И основной целью, так сказать, сверхзадачей этого цикла как раз и будет: показать, как взаимосвязаны между собой совершенно разные задачи и разделы математики.
На одном занятии, начинающемся с исследования довольно простой игры, мы плавно перейдем к таким разным понятиям, как золотое сечение, среднее гармоническое и обмотки тора; на другом, начав с понятия бесконечного ряда, постараемся понять, что такое число π и чем оно замечательно. Мы обсудим также вопрос о том, как доказать недоказуемость чего-нибудь (например, Пятого постулата Евклида), и разные другие темы.
Предварительные знания, выходящие за пределы школьной программы, не обязательны. Но желательно знать:
- a. элементы интегрального исчисления (общее представление о том, что такое интеграл, и знание некоторых элементарных интегралов, типа (интеграл от 1/x, интеграл от sin2 x), и т.п.
- b. кое-что из классической планиметрии (в особенности будут использоваться свойства инверсии).
- Впрочем, тем, кто этого не знает, лекции все равно будут понятны, но таким придется некоторые утверждения принять на веру.
О чем пойдет речь:
Игра Цзяньшицзы и обмотки тора.
- 1. Как выигрывать?
- 2. Свойства золотого сечения.
- 3. Свойства гармонического среднего.
- 4. Обмотки тора.
Как ускорить сходимость ряда?
- 1. Способы суммирования рядов, и почему этим не следует заниматься.
- 2. Некоторые приемы ускорения сходимости.
- 3. Число пи: почему, собственно говоря, так важно знать отношение длины окружности к диаметру?
Элементы неевклидовой геометрии.
- 1. Как доказать непротиворечивость классической геометрии?
- 2. Как доказать непротиворечивость неевклидовой геометрии?
- 3. Свойства неевклидовой плоскости: орициклы, эквидистанты и прочие звери.
Материалы
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс совместно с мех-мат МГУ, рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- А.А.Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.