Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2017
  • Программа Тихонов
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Михаил Андреевич Тихонов

Полтора

М. А. Тихонов планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Бывают объекты непрерывные, а бывают дискретные. Например, размерность пространства. Она дискретна: пространства бывают одномерные, двумерные, трехмерные… А вот размерности «полтора» не бывает. Или бывает?

Оказывается, дискретные объекты иногда можно обобщить до непрерывных, и на первой половине курса мы разберем несколько конкретных примеров. Начав с совсем тривиальной арифметики, мы быстро дойдем до таких «странных» вещей, как дробные производные, а на второй лекции разберем красивый пример из алгебраической геометрии. Эти примеры проиллюстрируют один общий рецепт нетривиальных обобщений: если суметь переговорить привычные понятия на другом языке, то «сложные» операции могут стать простыми, и наоборот.

А во второй половине я расскажу, как этот рецепт позволяет подступиться к очень глубокой проблеме современной… биологии. За последние 10 лет в микробиологии произошла настоящая революция, и по мере того, как мы все больше узнаем о микроорганизмах, привычные дискретные понятия «вида» и «организма» становятся все более размытыми. Биология не знает, как правильно обобщить эти понятия до непрерывных, причем вопрос отнюдь не праздный: сегодня эта проблема особенно остро встает при изучении микробных сообществ, представляющих прямой медицинский интерес.

Следуя нашему «рецепту», мы попробуем придумать «другой язык» для описания динамики экосистемы. А именно, вместо численности популяций и количества видов мы задумаемся о свойствах «спектра релаксации» (предварительно определив, что это такое). Мы увидим, что экосистему с двумя видами можно непрерывно перевести в такую, где видов уже три. Причем сделать это можно разными способами, один из которых на промежуточном этапе похож на «два с половиной вида», а другой совсем не похож.

Первые три лекции будут доступны всем. На последней лекции мне придется использовать слова «собственный вектор» и «собственное значение», а также написать пару простых дифференциальных уравнений. Тем не менее, я надеюсь, что на некотором интуитивном уровне происходящее будет понятно и школьникам.

План курса

Лекция 1. Арифметика, алгебра, анализ: дробные числа, дробные степени, дробные производные.
Лекция 2. Алгебраическая геометрия: может ли точек быть больше одной, но меньше двух?
Лекция 3. Проблема «вида» и «организма»; примеры из биологии, заставляющие задуматься.
Лекция 4. Экосистема из «полутора» видов. Гладкая интерполяция между одним организмом и двумя.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО