Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2017
  • Программа Смирнов ЕЮ
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Евгений Юрьевич Смирнов

Симметрические многочлены и многочлены Шуберта

Е. Ю. Смирнов планирует провести 4 занятия.

Доступны 4 видеозаписи курса.

Многочлен от нескольких переменных x1,…,xn называется симметрическим, если он инвариантен относительно любых перестановок переменных. Примерами таких многочленов являются, например, элементарные симметрические многочлены:x1+…+xnx1+…+xn, ∑i<jxixj∑i<jxixj, …, x1…xnx1…xn.. Основная теорема о симметрических многочленах утверждает, что любой симметрический многочлен можно выразить через элементарные, причем единственным образом.

Мы начнем со следующего вопроса: а какие еще наборы многочленов можно взять вместо элементарных симметрических? Мы увидим несколько таких наборов, после чего определим многочлены Шура — базис в пространстве симметрических многочленов, параметризуемый разбиениями (т.е. диаграммами Юнга), и обсудим, чем этот базис замечателен. Например, коэффициенты при всех мономах любого многочлена Шура неотрицательны, что совершенно не очевидно из определения. Мы докажем этот факт комбинаторно, установив соответствие между этими мономами и таблицами Юнга — способами заполнить клетки диаграммы Юнга натуральными числами по определенным правилам.

Многочлены Шура оказываются полезными во многих комбинаторных задачах. С их помощью мы получим доказательство формулы Макмагона, вычисляющей количество трехмерных диаграмм Юнга — фигурок из кубиков, которые умещаются в коробку заданных размеров.

Во второй части нашего курса мы рассмотрим многочлены, обладающие частичными симметриями — т.е. инвариантные относительно не всех, а лишь некоторых перестановок. Эти многочлены можно описать иначе: они аннулируются соответствующими операторами разделенных разностей. Это даст нам уже базис в пространстве всех многочленов, обобщающий базис из многочленов Шура — его элементы называются многочленами Шуберта и параметризуются перестановками. Все коэффициенты многочленов Шуберта опять-таки будут неотрицательными. Они тоже допускают комбинаторное описание, но вместо таблиц Юнга нужно взять некоторые картинки, которые по-английски называются pipe dreams (и напоминают фигурки из одноименной компьютерной игры).

Если останется время, мы обсудим, как многочлены Шуберта и pipe dreams возникают в геометрии в связи с разложением Брюа для группы GL(n).

Пререквизиты

Линейная алгебра в объеме первого курса. Одиннадцатиклассники тоже могут попробовать.

Материалы

  • записки занятий 1-2
  • записки занятия 3
  • записки занятия 4

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО