Иван Александрович Панин
Об одной гипотезе Гротендика–Серра
И. А. Панин планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Гипотеза Гротендика–Серра содержит в качестве частных случаев совершенно разные на вид задачи. На нескольких примерах будет показано то, как они формулируются, и то, как они решаются. Для колец, содержащих бесконечное поле гипотеза была доказана в [FP] здесь в Дубне в 2012 году! Для колец, содержащих конечное поле, гипотеза была доказана в [P] в 2014 году. Сформулирована гипотеза была Серром в 1959 году и Гротендиком в полной общности в 1969 году. Около 90% доказательства основано на интереснейших геометрических свойствах гладких аффинных алгебраических многообразий.
Пример задачи. Пусть К=С(t1,t2,...,tn)К=С(t1,t2,...,tn) — поле рациональных функций от nn переменных и пусть RR — подкольцо в КК, состоящее из дробей вида f/gf/g таких, что g(0,...,0)g(0,...,0) не равно нулю. Т.е. RR — кольцо рациональных функций, корректно определенных в окрестности начала координат. Пусть aiai, bibi — обратимые элементы в RR. Пусть A=∑ri=1aiT2iA=∑i=1raiTi2 и B=∑ri=1biT2iB=∑i=1rbiTi2 квадратичные формы. Предположим, что ВВ получается из АА линейной подстановкой с коэффициентами из КК. Теорема Оянгурена гласит, что тогда ВВ получается из АА линейной подстановкой с коэффициентами из RR.
Пререквизиты
Курс рассчитан на студентов. Требуется знание комплексных чисел, небольшое знание топологических пространств, непрерывных отображений и знакомство с понятием гомотопности непрерывных отображений. Впрочем последнее понятие будет объяснено.
Литература
- [FP] Fedorov, R.; Panin, I. A proof of Grothendieck—Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Publications Mathematiques de l'IHES .— 2015.— Vol. 122, no. 1.— P. 169-193. arXiv:1211.2678
- [P] Panin, I. Proof of Grothendieck—Serre conjecture on principal G-bundles over regular local rings containing a finite field, arXiv:1406.0247.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс совместно с мех-мат МГУ, рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- А.А.Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.