Виктор Алексеевич Клепцын
Склейки поверхностей, полукруговой закон Вигнера и свободная свёртка
В. А. Клепцын планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Все знают, что стомерный апельсин покупать не надо: он состоит в основном из кожуры. Но не все знают, что миллион-мерный арбуз состоит не только в основном из кожуры, но и в основном из экватора. Из какого? Да из любого! Более того, оказывается, что функция на многомерной сфере с ограниченным градиентом — «почти константа»; это утверждает теорема о концентрации меры.
Начав с «почти детских» вопросов о координатах случайно выбранной точки на многомерной сфере, мы наткнёмся на гауссово нормальное распределение и естественным образом получим некоторые его свойства. А потом, отталкиваясь от уже увиденного, посмотрим на ещё несколько разных красивых сюжетов.
Собрав из нормальных величин симметрическую матрицу, мы зададимся вопросом о её собственных значениях. Решая его, мы вдруг наткнёмся на задачу о склейке поверхностей — а ответом на исходный вопрос будет полукруговой закон Вигнера, который мы не докажем, но угадаем.
А ещё мы выясним, что если складывать две симметрические матрицы с известным распределением собственных значений, но «случайно развёрнутые» друг относительно друга, то у их суммы распределение собственных значений оказывается почти детерминированным. И так мы переоткроем операцию, которую называют свободной свёрткой.
От слушателей предполагается некоторое интуитивное понятие о теории вероятностей, и знакомство с началами линейной алгебры для второй половины курса.
E-mail оргкомитета:
dubna@mccme.ru