Антон Викторович Джамай
Геометрия дискретных уравнений Пенлеве
А. В. Джамай планирует провести 4 занятия.
Доступны 5 видеозаписей курса.
Целью данного курса является показать, как методы из самых разных областей математики, таких как теория динамических систем, теория дифференциальных уравнений, алгебраическая геометрия комплексных поверхностей, теория групп, теория представлений, и линейная алгебра, используются вместе для изучения нелинейных задач. Теория дискретных уравнений Пенлеве является очень хорошим примером для описания такого взаимодействия.
Программа курса
Занятие 1 (динамические системы): дискретная динамика на (комплексной) плоскости, отображения класса QRT и их геометрические свойства. Неавтономный вариант отображений QRT и дискретные уравнения Пенлеве. Метод ограничения особенностей. Признаки интегрируемости дискретных динамических систем.
Занятие 2 (алгебраическая геометрия и теория групп): дивизоры и их классы, группа Пикара, конечные и аффинные группы Вейля, системы корней, и диаграммы Дынкина. Теория Сакая: дискретное уравнение типа Пенлеве соответствует некоторому переносу в подрешетке симметрий группы Пикара семейства алгебраических поверхностей с заданной диаграммой Дынкина.
Занятие 3 (теория представлений): Построение бирациональных представлений аффиных групп Вейля. Восстановление уравнения из соответствующего вектора переноса.
Занятие 4 (дифференциальные уравнения): дискретные уравнения Пенлеве как симметрии дифференциальных уравнений Пенлеве и пространство начальных условий Окамото. Примеры приложений.
Пререквизиты
Курс ориентирован в основном на студентов, но я планирую работать с простыми конкретными примерами и надеюсь, что основные идеи будут понятны и школьникам. Минимальные требования к слушателям: знать понятия рациональной функции, линейного отображения, векторного пространства, класса эквивалентности. В дополнение к этому хорошо бы знать, что такое группа, проективное пространство, и дифференциальное уравнение.
Список литературы
- Masatoshi Noumi, Painlevé equations through symmetry., Translations of Mathematical Monographs, 223. American Mathematical Society, (2004) 156 pp.
- Kenji Kajiwara, Masatoshi Noumi, Yasuhiko Yamada, Geometric Aspects of Painlevé Equations, J. Phys. A: Math. Theor. 50(7) (2017) 073001
- Hidetaka Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), no. 1, 165–229.
Материалы
E-mail оргкомитета:
dubna@mccme.ru