Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2016
  • Программа Ильяшенко
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Юлий Сергеевич Ильяшенко

Бифуркации векторных полей на плоскости

Ю. С. Ильяшенко планирует провести 2 занятия.

Доступны 2 видеозаписи курса.

Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка $x(t)$ движется «по стрелочкам» — так, что $$ \frac{dx}{dt} = v(x(t)) \quad \text{ при всех $t$}. $$

Типичный вопрос теории динамических систем — описать качественное поведение решений при $t\to+\infty$. Скажем, решения могут стремиться к устойчивому положению равновесия (см. рис. 1), «наматываться» на периодическую траекторию («предельный цикл», см. рис. 2), и так далее.


Рис. 1.

Рис. 2.

Рис. 3.

Следующий вопрос — а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?

Достаточно часто при изменении параметра в каком-то интервале качественное поведение не изменяется, пока параметр не достигает некоторого критического («бифуркационного») значения, при котором поведение резко изменяется. Простейший пример такой картины (для динамики на прямой) изображен на рис. 3: у уравнения $$ \frac{dx}{dt}=x^2+\varepsilon $$ при $\varepsilon\lt0$ два положения равновесия, $x_{\pm}=\pm \sqrt{-\varepsilon}$, из которых одно устойчивое, а одно неустойчивое. В момент $\varepsilon=0$ происходит бифуркация: эти положения равновесия сливаются в одно полуустойчивое. Наконец, при сколь угодно малом положительном $\varepsilon$ это положение равновесия исчезает, и точки проходят из минус бесконечности в плюс бесконечность, «нигде не задерживаясь». Этот сценарий называют бифуркацией седлоузла.

Типичные однопараметрические бифуркации векторных полей на прямой и на плоскости полностью изучены. На прямой такая бифуркация всего одна — это описанная выше бифуркация седлоузла. Список типичных бифуркаций в однопараметрических семействах оказался счетным (а не конечным, как ранее ожидалось).

«Картографирование» двупараметрических бифуркаций представляет собой интересную, объемную, и почти еще не тронутую задачу. Однако, удивительным образом, когда параметров становится три — список бифуркаций становится континуальным: у некоторой группы сценариев появляется числовой инвариант.

В курсе мы построим «руками» явный пример («плачущее сердце») такого инварианта, придуманный меньше двух лет назад в совместной работе лектора, Ю. Кудряшова и И. Щурова.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО