Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2016
  • Программа Буфетов
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Александр Игоревич Буфетов,
Дмитрий Игоревич Зубов

Меры Пальма

А. И. Буфетов и Д. И. Зубов планируют провести 4 занятия.

Доступны 4 видеозаписи курса.

Каковы шансы 18-летнего москвича дожить до 80 лет?

Джон Граунт, изучавший таблицы смертности (bills of mortality, [3]) лондонцев ещё в середине XVII века, считается предтечей теории точечных процессов, изучающей последовательности неразличимых событий, происходящих через случайные промежутки времени.

Например, в процессе Пуассона количества событий в непересекающихся интервалах времени независимы. Таким образом можно моделировать приход автобусов на остановку. Если автобус ходит по Пуассону в среднем раз в 10 минут, а мы приходим на остановку каждый день в одно и то же время, то мы будем ждать следующего автобуса в среднем десять минут (отнюдь не пять!). В этом состоит парадокс времени ожидания.

Разбирая парадокс, мы придём к мерам Пальма – условным мерам при условии события в данный момент времени. Отправляясь от введённой Пальмом в [7] функции, меры Пальма подробно изучил в работе [5] А.Я. Хинчин (см. также [6]).


Конрад Пальм
(1907-1951)

Александр Яковлевич Хинчин
(1894-1959)

Во второй части курса мы рассмотрим так называемые детерминантные точечные процессы, моделирующие поведение газа заряженных частиц, а также (гипотетически) распределение нулей дзета-функции Римана. В этой модели частицы влияют друг на друга на сколь угодно большом расстоянии.

На левом рисунке частицы иногда накапливаются, а на правом отталкиваются под действием кулоновской силы.

Главный результат второй части курса – явное описание [1] условных мер Пальма детерминантных процессов.

План курса

  1. История точечных процессов: от таблиц смертности к теории массового обслуживания.
  2. Пуассонов процесс и парадокс времени ожидания.
  3. Теорема Пальма--Хинчина.
  4. Гиббсовское свойство. Условные меры детерминантных точечных процессов.

Доказательства в курсе используют только сведения, входящие в школьную программу (дифференцировать и интегрировать функции одной переменной всё же понадобится), и наш курс вполне доступен увлечённому школьнику.

Ссылки

[1] Alexander I. Bufetov. Conditional measures of determinantal point processes. Preprint.
[2] D.J. Daley, D. Vere-Jones. An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer-Verlag New York, 2003.
[3] John Graunt. Observations on the London bills of mortality. 1662.
[4] А.Н. Колмогоров. Sur le problème d'attente. Мат. сборн., 1931, 38, № 1—2, 101-106.
[5] А.Я. Хинчин. Математические методы теории массового обслуживания. Тр. МИАН СССР, 1955, том 49, стр. 3-122.
[6] А.Я. Хинчин. Математическая теория стационарной очереди. Мат. сборн. 1932, 39, №4, 73-84.
[7] C. Palm. Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics, 1943, 44, 1-189.

Материалы

  • листки 1-2

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО