![](/media/filer_public/2a/5c/2a5c5bc5-9bb5-49b1-833f-948e54a37f98/losev.jpg)
Иван Вадимович Лосев
Представления симметрической группы, как первый шаг к категорным представлениям алгебр Ли
И. В. Лосев планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Теория представлений изучает представления матрицами алгебраических структур. Самой базовой алгебраической структурой является группа, а самыми базовыми группами — симметрические группы, также известные, как группы подстановок. Классический подход к построению (и классификации) представлений состоит в том, чтобы взять диаграмму Юнга, по ней построить так называемые симметризаторы Юнга, с помощью которых можно реализовать любое неприводимое представление с комплексными коэффициентами внутри групповой алгебры. Этот подход показывает, что неприводимые представления параметризуются диаграммами Юнга, но не объясняет, почему диаграммы являются «правильным» параметризующим множеством. Более современный подход, принадлежащий Вершику и Окунькову, устраняет этот недостаток, индуктивно строя представления симметрических групп. Этот подход является одной из отправных точек для теории представлений алгебр Ли в категориях, одном из самых ярких направлений в теории представлений 2000-ых, и позволяет получать новые результаты о представлениях симметрических групп над полями положительной характеристики, где многие базовые результаты, основной из которых — вычисление характеров неприводимых представлений, остаются неизвестными.
В своих четырех лекциях я введу основные сведения из теории представлений конечных групп, объясню подход Вершика и Окунькова к представлениям симметрических групп. Если останется время, я расскажу о том, что происходит в положительной характеристике и при чем тут алгебры Ли. Курс должен быть понятен студентам, начиная с первого курса, хорошо освоившим курс алгебры.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.