Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2015
  • Программа Клепцын
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Виктор Алексеевич Клепцын

Вероятность пробоя на треугольной решетке - и при чем тут дискретный комплексный анализ?

В. А. Клепцын планирует провести 4 занятия.

Доступны 5 видеозаписей курса.

Рассмотрим прямоугольник, составленный из маленьких правильных шестиугольных плиток. Подкинем для каждой из этих плиток монетку, и, если выпадет орел, объявим ее открытой, а иначе закрытой. С какой (примерно) вероятностью от левого края прямоугольника до правого можно дойти путем, проходящим только по открытым плиткам?

Этим и многими другими схожими вопросами занимается теория протекания — историю которой принято отсчитывать с работы 1957 года, в которой Хаммерсли и Броадбент изучали прохождение газа через угольный фильтр противогаза для шахтеров.

Ответ на вопрос о вероятности пробоя дается (на первый взгляд пугающей) формулой Карди, предсказанной им в 1991-м из соображений конформной теории поля. Строго эта формула — в гораздо более приятно выглядящей переформулировке Л. Карлесона — была доказана лишь десять лет спустя С. К. Смирновым в его работах 2001-го года (одних из тех, за которые в 2010-м он получил премию Филдса).

В нашем курсе мы, хоть и не в деталях, обсудим доказательство этой формулы — опирающееся на такую удивительную вещь, как дискретный комплексный анализ. Начальную часть последнего мы сначала построим, а затем ею воспользуемся; интересно, что некоторые утверждения в дискретном анализе доказываются проще, чем их непрерывные аналоги.

Наконец, мы обсудим описание формы границы связной компоненты (точнее, границы между двумя большими связными компонентами открытых и закрытых плиток). Оказывается, что такие границы ведут себя, как фракталы — в частности, в прямоугольнике с размерами порядка N путь пробоя, скорее всего, будет состоять из примерно (по порядку роста) N 4/3 плиток. Вопрос о поведении границы — дорога, ведущая к уравнению эволюции Шрамма–Левнера, при разных параметрах (доказано или гипотетически) описывающему случайные пути во многих задачах: блуждания со стиранием петель, двойных димеров, границы между областями для критического намагничивания, и многих других.

Для понимания курса должно быть достаточно хорошего знакомства с комплексными числами, и интуитивного понимания теории вероятностей. Я надеюсь сделать этот курс полностью доступным студентам и интересующимся одиннадцатиклассникам.

Программа курса

  1. 1. Задача пробоя на решетке (фильтр противогаза, описание эпидемии в роще); критическая вероятность.
  2. 2. Двойственность и теорема Харриса, размеры кластеров.
  3. 3. Конформные отображения; универсальность и конформная инвариантность ответа в задаче пробоя.
  4. 4. Дискретный комплексный анализ.
  5. 5. Задача Дирихле: распределение температуры и форма мыльной пленки.
  6. 6. Доказательство формулы Карди для треугольной решетки.
  7. 7. Вопрос о форме границы и уравнение Шрамма—Левнера.

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО