Ростислав Андреевич Девятов
Диаграммы Гейла
Р. А. Девятов планирует провести 3-4 занятия.
Доступны 3 видеозаписи курса.
Наборы точек на плоскости устроены сложнее, чем наборы точек на прямой, наборы точек в трёхмерном пространстве (и даже выпуклые многогранники в трёхмерном пространстве) устроены сложнее, чем плоские многоугольники. Можно предположить, что многогранники в многомерных пространствах устроены ещё сложнее. Тем не менее, оказывается, что многогранники с количеством вершин, «ненамного большим», чем размерность пространства, устроены «не так сложно».
В нашем курсе мы рассмотрим конструкцию (диаграмму Гейла), которая позволяет изучать комбинаторику наборов из n точек в d-мерном пространстве (и, в частности, выпуклых n-мерных многогранников с d вершинами) с помощью наборов n точек в (n-d-2)-мерном пространстве и некоторых дополнительных данных. Также мы увидим интересные эффекты, которые имеют место для многогранников размерности 4 и выше, но не проявляются в пространствах размерности 3 и меньше.
Для понимания курса достаточно знания базовых понятий линейной алгебры: линейные пространства и отображения, задание линейных отображений матрицами.
Программа курса
- 1. введение в линейную алгебру (или напоминание): ядро и образ линейного отображения, определитель, проверка линейной зависимости набора векторов с помощью определителя.
- 2. Комбинаторно эквивалентные многогранники. Пример многогранника с «интуитивно неочевидной» комбинаторикой: циклический многогранник.
- 3. Комбинаторика наборов точек в аффинном пространстве и наборов векторов: зависимости и значения.
- 4.(Если хватит времени.) Доказательство эквивалентности двух определений комбинаторики набора точек.
- 5. Построение диаграммы Гейла. Соответствие комбинаторики диаграммы Гейла конфигурации точек (многогранника) и комбинаторики самой конфигурации точек (многогранника).
- 6. Пример многогранника, у которого нельзя все вершины сделать рациональными, сохраняя комбинаторику.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- Андроник Арамович Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.