Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2014
  • Программа Раскин
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Михаил Александрович Раскин

«Кто я? Где я?», или предположения о вероятностных выборках

М. А. Раскин планирует провести 4 занятия.

При решении вероятностной задачи мы обычно начинаем с каких-то предположений о распределениях вероятностей. Зачастую естественно один раз зафиксировать эти предположения и дальше задавать разные вопросы. В этом курсе предлагается отвечать на один и тот же вопрос, немного меняя предположения.

Нужно заранее хорошо представлять себе, что такое условная вероятность, математическое ожидание, дисперсия. В конце курса понадобится поверхностное представление об аксиоматике теории вероятностей в общем случае.

Ещё нужно нужно не бояться разбираться в ситуации, где каждый возможный ответ противоречит здравому смыслу.

Примерные темы таких рассмотрений.

1. Выберем случайно и равновероятно…

Какая ожидаемая длина случайной хорды данной окружности? Что нам мешает выбрать «случайное натуральное число» и что будет, если не испугаться трудностей?

Равна ли средняя продолжительность жизни продолжительности жизни случайно выбранного человека в случайный момент времени?

2. Эксперименты на людях — начиная с 15 000 000 000-го года до нашей эры?

Как философские рассуждения о возможном и существующем влияют на математический ответ, если разрешать копировать наблюдателя. Бросания монетки, антропный принцип и априорный аргумент в пользу конца света.

3. Когда «чуть-чуть» считается или не считается. Пределы распределений.

Наверное, это будет ближе к ликбезу на всякий случай. Например, если окажется, что не все это знают, обсудим пример последовательности распределений на натуральных числах, у которой и сами вероятности и математическое ожидание очень быстро сходятся к предельному распределению, а вот дисперсия имеет другой предел.

4. Вычёркивания из последовательностей и клеточные автоматы с делящимися клетками.

Игру «Жизнь» Конвея многие знают. Но в ней есть поле, на котором всё и происходит. А что можно сказать и как можно описывать ситуацию, когда из поля можно убирать или вставлять куски? Какие есть варианты описания? Какие проблемы с вероятностями можно наблюдать даже на одной конфигурации поля?


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО