Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2013
  • Программа Беклемишев
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Лев Дмитриевич Беклемишев

Что такое логика доказуемости?

Л.Д.Беклемишев планирует прочитать одну лекцию

Классическая логика высказываний исходит из предположения о том, что любые высказывания либо истинны, либо ложны. Логика доказуемости отражает более глубокую картину мира, осознанную после теорем Гёделя о неполноте: истинность высказывания, вообще говоря, не равносильна его доказуемости. Можно ли - и если да, то как - говорить на уровне логики о доказуемости или недоказуемости высказываний, наряду с их истинностью или ложностью? Решение было, по существу, предложено ещё Гёделем, а потом эта область активно развивалась начиная с 60-х годов XX века.

Язык логики доказуемости, наряду с обычными связками логики высказываний, содержит одноместные связки, обозначаемые □ и ◊. При этом □ A выражает доказуемость высказывания A, а ◊ A его непротиворечивость. Какие принципы логики доказуемости следует считать тавтологиями, то есть верными (подумайте: истинными или доказуемыми?) независимо от смысла элементарных высказываний, из которых они построены?

Слушателям рекомендуется подумать, следует ли считать тавтологиями следующие примеры:
□ A & □ B → □(A & B)
□ (A ∨ B) → □ A ∨ □ B
□ A → □□ A
◊ A → □ ◊ A
□ A → A

Как можно описать множество всех тавтологий логики доказуемости? Есть ли алгоритм, распознающий тавтологичность?

Для понимания рассказа будет полезно общее знакомство с теоремами Гёделя о неполноте и иметь представление о формальных системах, построенных на базе логики предикатов, таких как формальная арифметика Пеано. Разумеется, от слушателей НЕ требуется помнить многочисленные технические детали.

Материалы

  • задачи к лекции

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО