Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2012
  • Программа Сосинский
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Алексей Брониславович Сосинский

Узлы: инварианты и нормальные формы

А.Б.Сосинский планирует провести 3–4 занятия.

Теория узлов и зацеплений — наука с более чем 200-летней историей; ее первые значительные результаты принадлежат великому Гауссу; теория узлов достигла своего апогея в девяностые годы прошлого столетия в работах В.А.Васильева и четырех филдсовских лауреатов В.Джонса, Э.Виттена, В.Дринфельда и М.Концевича. Удивительно, что отдельные достаточно свежие достижения этой теории, например знаменитый полином Джонса, могут быть изложены в форме доступной (умному) девятикласснику. На летней школе этого года, кроме моего миникурса, теории узлов будут посвящены курсы Ивана Лосева и Дениса Миронова.

Узел — это гладкая кривая в пространстве. Два узла считаются эквивалентными, если один можно гладко продеформировать в другой. Например, узел называется тривиальным, если его можно продеформировать в круглую окружность, иными словами — распутать. Основные проблемы теории узлов: проблема классификации или сравнения (два узла даны своими изображениями — эквивалентны ли они?) и проблема Гордиева узла или проблема распутывания (дано изображение узла — тривиален ли он?). Эти проблемы помогают решить инварианты и приведение (с помощью компьютерных анимации) к т.н. нормальным формам; об этом и будет рассказаны в курсе.

Лекция и первые два занятия будут доступны школьникам, а неповерхностное понимание последнего занятия потребует более серьезных знаний, например, полезно знать про необходимое условие минимума функционала и градиентный спуск (но зато будут показаны мультфильмы).

Программа

  1. 1.Диаграмма узла, изотопия, геометрия и арифметика узлов, движения Рейдемейстера, вычисление полинома Александера-Конвея.
  2. 2.Скобка Кауфмана и полином Джонса.
  3. 3.Свойства полинома Джонса и его применения.
  4. 4.Энергия плоских кривых и узлов.

Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО