Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2012
  • Программа Панина
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Гаянэ Юрьевна Панина

Комбинаторика многогранников:
от теоремы Штейница к универсальности

Г.Ю.Панина планирует провести 4 занятия

…сложность растет с переменой мест
И.Бродский

Курс построен на контрасте
«трёхмерные многогранники устроены просто»
vs
«начиная с размерности 4, многогранники устроены универсально сложно».

Программа курса:

  1. 1. Первый контринтуитивный пример: циклический многогранник.
  2. 2. Теорема Штейница (о простой комбинаторной природе трехмерных многогранников) и следствия из нее: форму грани трехмерного многогранника можно предписать, любой комбинаторный тип многогранника может быть реализован в рациональных числах.
  3. 3. В старших размерностях и теорема Штейница, и следствия из нее перестают иметь место. И это хорошо, так как контрпримеры дают нам набор комбинаторных «инструментов» и «кубиков лего», которые будем всячески сочетать (приветствуется фантазия).
  4. 4. Теорема универсальности Мнева, или, по меткому выражению Р. Вакила, «Закон Мерфи для выпуклых многогранников» будет получена в результате следующей цепочки конструкций: Комбинаторика плоских точечных конфигураций — Точечные конфигурации кодируют алгебраические соотношения — по плоской точечной конфигурации можно построить выпуклый многогранник.
  5. 5. Разнообразие приемов: теорема универсальности для шестимерных многогранников (через зонотопы), теорема универсальности для четырехмерных многогранников (многогранник с «большой» гранью).

От слушателей требуется представление о (многомерном) евклидовом пространстве.
Например, хорошо понимать, что уравнение 4x−3y+7z+t=8 задает гиперплоскость в четырехмерном пространстве.

Рекомендуемая литература: J. Richter-Gebert, Realization spaces of polytopes, Lecture Notes in Math., Springer, 1996.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО