Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2012
  • Программа Панин
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Иван Александрович Панин

Кобордизмы (алгебраические) и их применение

И.А.Панин планирует провести 4 занятия

В курсе из 4-х лекций будет рассказано о положительном решении одной давно стоявшей наивной задачи (см. формулировку ниже) и ее связи с кобордизмами. Тем самым слушатели познакомятся с алгебраическими кобордизмами, введенными в математику около 2000 года Воеводским с одной стороны и Левиным и Морелем с другой. А так же слушатели познакомятся и с классическими кобордизмами, интенсивно разработанными школами Тома, Милнора и Новикова. Курс рассчитан на студентов.

Замечание. Пусть целое число u таково, что уравнение T1² +T2² + … + Tn² = u² Tn²+ 1; имеет решение в рациональных числах. Домножив такое решение на подходящее целое число, можно избавиться от знаменателей и получить целочисленное решение. Далеким обобщением этого упражнения является следующая

Задача: Пусть u=f(z1, …, zn)/g(z1, …, zn) — частное двух комплексных многочленов от n переменных, причем g(0, …, 0) не ноль.

Предположим, что имеется целое к > 0 такое, что u является суммой к квадратов рациональных функций от n переменных. Верно ли, что тогда u можно представить в виде суммы к квадратов рациональных функций pi/qi от n переменных, регулярных в окрестности начала координат? (т.е. для каждого qi (0, …, 0) не ноль).

Если n=1, то решение задачи состоит в небольшой модификации рассуждения про избавление от знаменателей. При n > 1 столь наивный подход не работает. Будет объяснено, что такое алгебраические кобордизмы и как их применение решает положительно указанную задачу.

Замечание. Конечно основная трудность в том, что исходное представление функции u в виде суммы k квадратов могло использовать рациональные функции не регулярные в окрестности начала координат. Задача была решена лектором положительно (см. www.math.uiuc.edu).

В 2009 году решение было опубликовано в Inventions Mathematicae. Кажется правдоподобным, что метод может сработать и в решении других родственных задач.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО