Иван Вадимович Лосев
Теория представлений групп и теорема Бернсайда.
И.В.Лосев планирует провести 4 занятия
Описание: Одна из наиболее фундаментальных задач современной алгебры — описание конечных групп. Это совершенно дикая задача. То, что было сделано стараниями многих математиков, это классификация конечных простых групп, которые можно представлять себе, как базовые блоки общих конечных групп. Эта классификация очень сложна и исключительно объемна, так что мы рассмотрим только один из самых первых, но уже нетривиальный, результат в этом направлении, теорему Бернсайда. Она утверждает, что простая группа не может состоять из pnqm элементов, где p; q простые. Самое простое и элегантное доказательство этой теоремы основано на теории представлений и, кроме того, использует алгебраические числа. Это доказательство представляет собой прекрасную иллюстрацию того, как теория представлений может использоваться для получения результатов о структуре групп, даже если эти результаты, на первый взгляд, никакого отношения к представлениям не имеют.
Целевая аудитория: Курс рассчитан на студентов и продвинутых (=владеющих указанными ниже пререквизитами) школьников.
Предварительный план:
- основы теории представлений (теорема Машке, лемма Шура, характеры и их ортогональность).
- доказательство теоремы Бернсайда, с необходимыми сведениями об алгебраических числах.
Пререквизиты:
линейная алгебра (векторные пространства, базисы, линейные отображения, собственные значения и собственные векторы) и основные сведения о группах (подгруппы, фактор-группы, действия, классы сопряженности) и кольцах. Предварительных знаний о теории представлений групп не предполагается.
Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года
Расписание занятий в этом семестре
Курсы, читавшиеся в НМУ в разные годы (All Courses)
Если не указано иное, то начало занятий 7 февраля 2025.
Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.
К ВИДЕО-записям курсов этого семестра
Обязательные курсы
Первый курс
- Константин Валерьевич Логинов
- Алгебра-2
- читается по понедельникам с 17:30, очно+трансляция.
- Георгий Черных
- Топология-1
- читается по четвергам с 17:30, очно+трансляция.
- Олег Карлович Шейнман
- Математический анализ-2
- читается по пятницам с 17:30, очно+трансляция.
Второй курс
- Тарас Евгеньевич Панов
- Топология-3
- читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Викторович Пенской
- Дифференциальная геометрия
- читается по средам с 17:30 (семинары с 19:20), очно+трансляция
- Алексей Игоревич Ильин
- Алгебра-4 (Группы и алгебры Ли)
- читается по четвергам с 17:30, очно+трансляция.
Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года
- Михаил Юрьевич Розенблюм
- Алгебраическая теория чисел: введения. Продолжение годового спецкурса
- Денис Терешкин
- Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.
- Константин Валерьевич Логинов
- Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.
- Георгий Игоревич Шарыгин
- Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.
- А.А.Арутюнов
- Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.
- Андрей Дмитриевич Рябичев
- Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.
- Георгий Борисович Шабат
- Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
- Тарас Евгеньевич Панов
- Торическая топология, комбинаторика и теория гомотопий. Спецсеминар
- Георгий Игоревич Шарыгин и др.
- Деформационное квантование и квантовые группы. Спецсеминар
- А.М.Вербовецкий и И.С.Красильщик
- Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик - Николай Германович Мощевитин
- Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов
- Владимир Олегович Медведев
- Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
- Александр Борисович Калмынин
- Методы решета. Спецкурс рекомендован для 3-5 курсов.
- Алексей Викторович Пенской
- Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.