Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2008
  • Программа Вершик
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Анатолий Моисеевич Вершик

A что будет, если n очень большое?

А.М.Вершик планирует провести 2-3 занятия

Ответом на этот вопрос занимется пол-матетматики и почти вся физика, — более точную оценку дать невозможно, поскольку часто этот вопрос маскируется совсем непохожими на него.

Но это не значит, что, если вы видите в задаче n или даже 2n , то надо сразу задавать этот вопрос или немедленно переходить к пределу по n — "асимптотничать" надо с умом.

Мы рассмотрим несколько таких примеров.

Пример №1.
Как устроена подстановка n предметов (т.е элемент симметрической группы Sn) когда n большое?

1. Простая задача: сколько циклов в произвольной ("типичной" или "случайной" — это будет уточнено) подстановке при большом n?

2. Задача посложнее с неожиданным ответом: каким может быть типичное соотношение между суммами длин циклов четной и нечетной длины — при больших n?

3. Трудный вопрос: в скольких циклах содержится 99% предметов у 99% всех подстановок при очень больших n (ответ — в 11).

Оказывается, все эти вопросы можно задать и получить те же ответы в задаче о совсем не похожих объектах, а именно: о простых делителях типичных натуральных чисел, Например, аналог последней задачи: произведение 11 старших простых делителей для большинства (99%) натуральных чисел n почти равно этому числу =n0.99, если n очень большое.

Эти задачи привели к замечательной теории случайных сходящихся рядов, которая нашла применения в популяционной генетике, в теории запасов, и даже в теории представлений и ее применениях к физике.

Пример №2.
Рассмотрим разбиения натурального числа в сумму натуральных же слагаемых расположенных в невозрастающем порядке. Разбиениями занимался еще Л.Эйлер, а Харди и Раманауджан нашли в начале ХХ века очень сложную формулу для числа таких разбиений (простой формулы не существует!). Как выглядит типичное разбиение числа n, когда n очень большое. Первым этот вид нашел физик Темперли 60 лет назад, правда, без всякого доказательства. А мы попробуем доказать, что предельная форма разбиения, (которое можно геометрически изображать диаграммой Юнга) существует и найдем ее.

Пример №3.
Рассмотрим выпуклые многоугольники на плоскости, вершины которых лежат на целочисленной решетке (т.е.имеют целые координаты). Зафиксируем площадь многоугольников, равную n2, и будем считать, что центр тяжести вершин этих многоугольников лежит в начале координат. Как выглядит типичный многоугольник при очень большом n, если его сжать в n раз? А если фиксировать не площадь, а квадрат, в котором лежат многоугольники?


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО