Московский центр непрерывного математического образования
En
  • Главная
  • / ЛШСМ
  • / 2007
  • Программа Клепцын
    Архив по годам200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024


  • Программа
  • Преподаватели
  • Материалы

Виктор Алексеевич Клепцын

Намагничивание решетки: фазовые переходы и уравнение Шрама√Левнера.

В.А.Клепцын планирует провести 4 занятия.

Будет рассказан один сюжет, который может быть равно отнесён к математике и к физике. Это уравнение (эволюция) Шрама-Лёвнера, или SLE.

Возникает оно следующим образом: если взять довольно простую и естественную модель намагничивания двумерного бруска металла, и попытаться спросить, «а как эта модель себя будет вести», ответом будет это уравнение. Причём в большинстве случаев — ответом гипотетическим!

Точнее говоря, как следует из физических аргументов, ответ должен быть именно таким. Но увы, существующая стратегия математического доказательства того, что ответ именно такой, делится на две половины; и если одна из них, которой и будет посвящён этот курс, работает всегда, то вот вторую удаётся заставить работать только для некоторых частных случаев.

Вообще, то, чему посвящён этот курс — удивительно молодая наука, и сейчас очень динамично развивающаяся: SLE появилось в работе Шрама в 2000 году, работы Смирнова с завершением обоснования ответа в одном из случаев на треугольной решётке в 2001-м, в 2004-м появилась работа Лаулера, Шрама и Вернера, где SLE появлялось как предел в ещё одной возможной постановке, а в 2006-м — препринт Смирнова с доказательством сходимости к SLE в одном из случаев для модели намагничивания квадратной решётки. В 2006-м же Венделин Вернер получил премию Филдса за исследования именно в этой области, и этой же области была посвящена пленарная лекция Станислава Смирнова на последнем международном математическом конгрессе.

Я собираюсь нарисовать общую картину того, что сейчас в этой области происходит, и рассказать на условно-доказательном уровне ту половину стратегии, которая работает всегда: почему SLE должно быть пределом («ответом»), если предел конформно-инвариантен (что это значит — будет рассказано).

Помимо основной цели, я постараюсь «зацепить» несколько красивых сюжетов — так, первое занятие мы начнём с «вывода» (нематематического) распределения Максвелла скоростей молекул в газе.

Слушателям курса потребуются интуитивное понимание (но не более того) вероятности, и знание комплексных чисел.

Лекция 1
Статистическая механика: гамильтониан и меры Гиббса. Распределение Максвелла скоростей молекул в газе и броуновское движение частицы в поле сил, как частные случаи меры Гиббса.

Лекция 2
Постановка задачи: модель Изинга. Фазовые переходы: что будет с дискетой, если её сунуть в духовку? Задача о предельных формах кластера и границы («интерфейса»). Перколяция как предел при бесконечной температуре.

Лекция 3
Как «конформно» параметризовывать разрезы (будущие формы границ)? Физический принцип: конформная инвариантность предела для двумерных решётчатых моделей, броуновское движение на плоскости как частный случай.

Лекция 4
SLE как ответ в задаче об интерфейсе, если принцип применим. Открытые вопросы.


Программа курсов и семинаров МЦНМО-НМУ в весеннем семестре 2024/2025 года

Расписание занятий в этом семестре

 

Курсы, читавшиеся в НМУ в разные годы (All Courses)

Если не указано иное, то начало занятий 7 февраля 2025.

Все обязательные курсы, почти все спецкурсы и некоторые доклады на спецсеминарах будут записываться на видео. Они будут доступны на общедоступном ресурсе.

К ВИДЕО-записям курсов этого семестра

Обязательные курсы

Первый курс

 

Константин Валерьевич Логинов
Алгебра-2
читается по понедельникам с 17:30, очно+трансляция.

 

Георгий Черных
Топология-1
читается по четвергам с 17:30, очно+трансляция.

 

Олег Карлович Шейнман
Математический анализ-2
читается по пятницам с 17:30, очно+трансляция.

 

 

Второй курс

 

Тарас Евгеньевич Панов
Топология-3
читается по понедельникам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Викторович Пенской
Дифференциальная геометрия
читается по средам с 17:30 (семинары с 19:20), очно+трансляция
 
Алексей Игоревич Ильин
Алгебра-4 (Группы и алгебры Ли)
читается по четвергам с 17:30, очно+трансляция.

 

 

Список спецкурсов и спецсеминаров в весеннем семестре 2024/2025 года

Михаил Юрьевич Розенблюм
Алгебраическая теория чисел: введения. Продолжение годового спецкурса
 
Денис Николаевич Терешкин
Аддитивные и абелевы категории. Спецкурс рекомендован для 3-5 курсов.

 

Константин Валерьевич Логинов
Введение в ограниченность многообразий Фано. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Игоревич Шарыгин
Циклические гомологии и их применения. Спецкурс рекомендован для 3-5 курсов.

 

Андроник Арамович Арутюнов
Грубая геометрия. Спецкурс в формате лекция + семинар, рекомендован для 3-5 курсов.

 

Андрей Дмитриевич Рябичев
Введение в поверхности бесконечного типа. Спецкурс рекомендован для 3-5 курсов.

 

Георгий Борисович Шабат
Тэта-функции и решетки. Часть 2. Спецкурс рекомендован для 3-5 курсов.
 
Тарас Евгеньевич Панов
Торическая топология, комбинаторика и теория гомотопий. Спецсеминар

 

Георгий Игоревич Шарыгин и др.
Деформационное квантование и квантовые группы. Спецсеминар

 

А.М.Вербовецкий и И.С.Красильщик
Когомологические аспекты геометрии дифференциальных уравнений,
руководители А.М.Вербовецкий и И.С.Красильщик

 

Николай Германович Мощевитин
Диофантовы приближения. Спецсеминар рекомендован для 3-5 курсов

 

Владимир Олегович Медведев
Геометрия общей теории относительности. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов. 
 
Алексей Викторович Пенской
Риманова геометрия. Спецкурс совместно с матфаком ВШЭ, рекомендован для 3-5 курсов.
 
Александр Борисович Калмынин
Методы решета. Спецкурс рекомендован для 3-5 курсов.
 
Алексей Викторович Пенской
 Спектральная геометрия. Спецсеминар рекомендован для 3-5 курсов.
 
uchast@mccme.ru
карта

МЦНМО

+7 (499) 241-05-00 adm@mccme.ru

НМУ

+7 (499) 241-40-86 +7 (499) 795-10-15 ium@mccme.ru

Книги

+7 (495) 745-80-31 biblio@mccme.ru
  • Адрес:
  • Москва, 119002, Большой Власьевский переулок, 11
  • Copyright ©1996–, МЦНМО