Виктор Алексеевич Клепцын
Динамические системы: аттракторы и хаос
Курс состоит из 4 занятий.
По определению, динамическая система - это пара из компакта ("множество состояний системы") и непрерывного отображения из этого компакта в себя ("что происходит с системой за одну секунду"). Это - некоторая математическая модель того, что происходит в реальных системах. Естественно, интересно исследовать, как система ведет себя с течением времени (при итерировании нашего непрерывного отображения). Например, "сваливается" ли она в устойчивое положение равновесия (как маятник с трением), выходит ли на какой-нибудь стационарный режим (то же, но с периодической раскачивающей силой), или ведет себя более-менее непредсказуемо (см. прогноз погоды).
Курс будет посвящен двум взаимосвязанным разделам теории динамических систем - аттракторам и математическому хаосу. Аттрактор, по определению - это множество состояний, на которое система "сваливается" с течением времени. Однако здесь возникает большой вопрос: как формализовать понятие "сваливания"? Выясняется, что в зависимости от формализации получаются (существенно) разные множества, и выделить из них какое-то "главное", чтобы сказать: "Это и есть аттрактор", не получается.
Математический хаос - один из ответов на парадокс детерминизма (если мы знаем начальные положения и начальные скорости всех частиц, то мы можем предсказать будущее абсолютно точно). Оказывается, что в некоторых динамических системах имеет место эффект "разбегания траекторий": две траектории с очень близкими начальными условиями через очень небольшое время расходятся и ведут себя совершенно независимо друг от друга.
Хотя в большинстве динамических систем хаос в той или иной форме присутствует (кроме самых простых и "хорошо себя ведущих"), "поймать" его (доказать строго, что хаос есть) не всегда просто. Довольно простой пример, в котором хаос "ловится руками", строится с использованием техники аттракторов (соленоид Смейла-Вильямса).
E-mail оргкомитета:
dubna@mccme.ru