Идеалы, фактор-кольца.

Задача 1. Пусть R — коммутативное кольцо.

а) (Вторая теорема об изоморфизме) Пусть I идеал в R, а S — подкольцо в R. Пусть

$$I + S = \{x + y \mid x \in I, y \in S\}.$$

Тогда

- I + S подкольцо в R;
- $I \cap S$ идеал в S;
- $(I+S)/I \cong S/(I \cap S)$.
- б) (Третья теорема об изоморфизме) Пусть I и J-идеалы в кольце R, причём $I\subset J$. Докажите, что

$$(R/I)/(J/I) \cong R/J$$

- в) Пусть $\alpha \in \mathbb{k} \supseteq \mathbb{F}$, где \mathbb{k} произвольное поле, \mathbb{F} простое подполе. Пусть существует $f \in \mathbb{F}[x]$ такой, что $f(\alpha) = 0$, причём степень f минимальна. Докажите, что $\mathbb{F}[\alpha] \cong \mathbb{F}[x]/(f(x))$.
- г) Примените вторую теорему об изомофризме к $R = \mathbb{Z}, I = m\mathbb{Z}, J = n\mathbb{Z}.$
- д) Пусть $n \in \mathbb{Z}$. Докажите, что $\mathbb{Z}[i]/n\mathbb{Z}[i] \cong (\mathbb{Z}/n\mathbb{Z})[x]/(x^2+1)$.

Задача 2. Верно ли, что если $A \cong B$ и $C \cong D$, $C \subset A$, $D \subset B$ —идеалы, то $A/C \cong B/D$?

Задача 3. Пусть I, J— идеалы в R,

$$IJ = \{x_1y_1 + \ldots + x_ny_n \mid x_i \in I, y_i \in J, n \in \mathbb{Z}_{>0}\}$$
$$I + J = \{x + y \mid x \in I, j \in J\}$$

- а) Докажите, что $I+J,IJ,I\cap J$ идеалы, причём $IJ\subseteq I\cap J$. Приведите пример, когда $IJ\neq I\cap J$.
- б) Докажите, что радикал идеала

$$\sqrt{I} = \{a \in R \mid a^n \in I$$
для некоторого $n \in \mathbb{Z}_{\geqslant 0}\}$

является идеалом и $\sqrt{IJ} = \sqrt{I \cap J}$.

Задача 4. Докажите, что кольцо $\mathbb{Z}[x]$ не является евклидовым.

Задача 5*. Пусть R — евклидово кольцо, в котором остаток определён однозначно. Докажите, что $R \cong \Bbbk[x]$, где \Bbbk — некоторое поле.

Задача 6. а) Докажите, что кольцо $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ не является Евклидовым кольцом.

- **6*)** Докажите, что кольцо $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ является кольцом главных идеалов.
- ${f B}^*$) Докажите, что если любой простой идеал в кольце—главный, то кольцо является кольцом главных идеалов.
- **г*)** Пусть R Евклидово кольцо. Докажите, что существует такой простой элемент $p \in R$, что $\pi(R^{\times}) = (R/pR)^{\times}$, где $\pi \colon R \to R/(p)$ канонический гомоморфизм.
- **д*)** Докажите, что кольцо $\mathbb{R}[x,y]/(x^2+y^2+1)$ является кольцом главных идеалов, но не является Евклидовым.
- **Задача 7.** Пусть R коммутативное кольцо с единицей. **a)** Два идеала называются *взаимно простыми*, если I+J=R. Докажите, что если идеал I взаимно прост с J_1,\ldots,J_n , то он взаимно прост с их пересечением.
- **б)** (Китайская теорема об остатках) Пусть в наборе идеалов I_1, \ldots, I_n кольца R любые два взаимно просты и $I = \cap_{i=1}^n I_i$. Докажите, что $R/I \cong (R/I_1) \times \ldots \times (R/I_n)$.