ТОПОЛОГИЯ–2 ЛИСТОЧЕК 4: ГОМОЛОГИИ

ЛЕКТОР: Г. С. ЧЕРНЫХ

- **1.** Любое непрерывное отображение $f: S^n \to S^n$ индуцирует отображение $f_*: H_n(S^n) \to H_n(S^n)$. Если выбрать образующую в этих гомологиях, мы получим изоморфизм $H_n(S^n) \cong \mathbb{Z}$, и следовательно, гомоморфизм групп $f_*: \mathbb{Z} \to \mathbb{Z}$. Любой такой гомоморфизм есть умножение на целое число. Оно называется *степенью* отображения f и обозначается $\deg f$.
- а) Докажите, что отображение deg: $[S^n, S^n] \to \mathbb{Z}$ является биекцией.
- **б)** Проверьте, что отображение $\pi_n(S^n) = [S^n, S^n]_{\bullet} \to [S^n, S^n]$, забывающее отмеченные точки, является биекцией. В частности, из пункта а) получаем биекцию deg: $\pi_n(S^n) \to \mathbb{Z}$.
- в) Докажите, что deg: $\pi_n(S^n) \to \mathbb{Z}$ изоморфизм групп.
- г) Докажите, что $\deg(f \circ g) = \deg(f) \cdot \deg(g)$. Выведите, что $f \colon S^n \to S^n$ гомотопическая эквивалентность $\iff \deg f = \pm 1$. Проверьте, что $\deg(\Sigma f) = \deg(f)$.
- д) Рассмотрим линейный изоморфизм $A \cdot \mathbb{R}^n \to \mathbb{R}^n$. Представим \mathbb{R}^n как S^n без одной точки. Докажите, что отображение A продолжается единственным образом до гомеоморфизма $\widehat{A} \colon S^n \to S^n$ и найдите степень \widehat{A} в терминах A. Найдите степень антиподального отображения $x \mapsto -x$.

Аналогично, A индуцирует отображение $A: \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$. Найдите степень этого отображения на гомологиях $H_{n-1}(\mathbb{R}^n - 0) \cong H_{n-1}(S^{n-1}) \cong \mathbb{Z}$.

- **e)** Убедитесь, что степень несюръективного отображения равна нулю. Приведите пример сюръективного отображения нулевой степени.
- $\ddot{\mathbf{e}}$) Докажите, что любое непрерывное отображение $\mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ имеет неподвижную точку. Приведите пример непрерывного отображения $\mathbb{R}P^{2n+1} \to \mathbb{R}P^{2n+1}$ без неподвижных точек.
- ж) Приведите пример отображения $\mathbb{C}P^{2n+1} \to \mathbb{C}P^{2n+1}$ без неподвижных точек.

На самом деле из meopeмы Лефшеца о неnoдвижной moчке следует, что у любого отображения $\mathbb{C}P^{2n} \to \mathbb{C}P^{2n}$ есть неподвижные точки.

- 3) Докажите, что если $f(x) \neq -g(x)$ для всех x, то f гомотопно g. В частности, если $f(x) \neq -x$, то $f \sim \mathrm{id}$, и аналогично, если у f нет неподвижных точек, то оно гомотопно антиподальному отображению $-\mathrm{id}$.
- **и)** Докажите, что на сфере S^n существует непрерывное всюду ненулевое касательное векторное поле $\iff n$ нечётно.
- **к)** Рассмотрим комплексный многочлен f(z) и задаваемое им отображение $f: \mathbb{C} \to \mathbb{C}$. Докажите, что это отображение продолжается до отображения $\widehat{f}: S^2 \to S^2$ и найдите его степень.
- **л)** Докажите, что любое отображение $f \colon S^n \to S^n$ гомотопно отображению, имеющему хотя бы одну неподвижную точку.
- м) Пусть для отображения $f\colon S^n\to S^n$ существует такое открытое множество $V\subset S^n$, что его прообраз $f^{-1}(V)$ состоит из конечного числа непересекающихся открытых множеств U_1,\ldots,U_k , причём ограничение f на каждое из них даёт гомеоморфизм $f|_{U_i}\colon U_i\stackrel{\cong}{\to} V$. Выберем точку $q\in V$. Тогда у неё тоже ровно k прообразов $p_i\in U_i$. Мы имеем изоморфизм вырезания $H_{n-1}(U_i,U_i-p_i)\cong H_n(S^n,S^n-p_i)$ и изоморфизм $H_n(S^n,S^n-p_i)\cong H_n(S^n)\cong \mathbb{Z}$ из длинной точной последовательности пары (S^n,S^n-p_i) (так как S^n-p_i —стягиваемо). Аналогично, $H_n(V,V-q)\cong \mathbb{Z}$, и мы получаем гомоморфизмы $(f|_{U_i})_*\colon \mathbb{Z}=H_n(U_i,U_i-p_i)\to H_n(V,V-q)=\mathbb{Z}$, то есть, умножения на целые числа $\deg_{p_i}f$ —локальные степени отображения f. Проверьте, что в таком случае $\deg_{p_i}f=\pm 1$ и докажите, что $\deg f=\sum_{p_i\in f^{-1}(q)}\deg_{p_i}f$.
- **н)** Докажите, что если группа G свободно действует на S^{2n} , то G=0 или $\mathbb{Z}/2$. Приведите пример, свободного действия любой \mathbb{Z}/m на любой нечётномерной сфере.

- о) Докажите, что чётное отображение $f \colon S^n \to S^n$ (т.е. f(x) = f(-x)) всегда имеет нулевую степень, когда n чётно, и всегда имеет чётную степень, когда n нечётно. Приведите пример чётного отображения $S^{2n+1} \to S^{2n+1}$ произвольной чётной степени.
- п) Докажите, что не существует такого X, что \mathbb{R}^{2n+1} гомеоморфно $X \times X$.
- **2.** (Вещественной) алгеброй с делением называется конечномерное вещественное векторное пространство A, снабжённое \mathbb{R} -билинейным умножением $A \times A \to A$, относительно которого A не имеет делителей нуля (т.е. $ab = 0 \Rightarrow a = 0$ или b = 0). Проверьте, что это равносильно тому, что для любых элементов $a \neq 0$ и b существует единственный элемент b0, такой что b1 («можно делить на ненулевые элементы слева»), и аналогично для деления справа.
- а) Докажите, что единственными алгебрами с делением, которые при этом ещё ассоциативны, коммутативны и обладают единицей, являются только \mathbb{R} и \mathbb{C} (с обычным умножением).
- **б)** Докажите, что если алгебра с делением *A* имеет размерность больше 1, то dim *A* чётна. На самом деле, единственными алгебрами с делением являются вещественные и комплексные числа, кватернионы и октавы.
- **3.** Для клеточного отображения $f\colon X\to Y$ между клеточными пространствами постройте морфизм клеточных цепных комплексов $f^{CW}\colon C_*^{CW}(X)\to C_*^{CW}(Y)$, индуцирующий f_* на гомологиях.
- **4.** Пусть $E \to S^n$ локально тривиальное расслоение со слоем F. Докажите, что имеет место длинная точная последовательность Вана

$$\cdots \to H_{i-n+1}(F) \to H_i(F) \xrightarrow{j_*} H_i(E) \to H_{i-n}(F) \to \cdots$$

где $j: F \hookrightarrow E$ — включение слоя.

- **5.** Для расслоения $E \to B$ со слоем F мы имеем действие монодромии $\pi_1(B) \to [F, F]$, и следовательно действие $\pi_1(B) \curvearrowright H_*(F)$.
- Представьте бутылку Клейна как пространство расслоения над окружностью и найдите действие монодромии на её гомологиях.
- **6.** Докажите, что для любой точки x конечного симплициального комплекса K группы гомологий $H_i(K,K-x)$ конечно порождены. Приведите пример конечного клеточного пространства X и точки $x \in X$ группы гомологий $H_i(X,X-x)$ не конечно порождены.
- 7. а) Пусть $X \subset S^n$ корасслоение, причём X гомеоморфно замкнутому шару. Докажите, что тогда $\widetilde{H}_i(S^n-X)=0$. Выведите, что если $X\subset S^n$ корасслоение и X гомеоморфно сфере S^k при k< n, то $\widetilde{H}_i(S^n-X)\cong \widetilde{H}_{n-i-1}(S^k)$ (это частный случай так называемой двойственности Александера).
- **б)** Докажите, что для корасслоения $X \subset S^n$ изоморфизмы $\widetilde{H}_i(S^n X) \cong \widetilde{H}_{n-i-1}(X)$ имеют место и если X гомеоморфно нескольким шарам или сферам, или букету нескольких сфер.
- **в)*** Докажите, что условие, что $X \subset S^n$ корасслоение, в предыдущих пунктах можно убрать. То есть, это верно для любых топологических вложений дисков, сфер и букетов сфер в сферу.
- В частности, при $X \cong S^{n-1}$ мы получаем, что $S^n X$ имеет ровно две компоненты связности (теорема Жордана) и гомологии этих компонент тривиальны. Пример сферы Александера показывает, что компоненты $S^n X$ могут не быть стягиваемыми. Аналогично, например, для зацепления L из n компонент в S^3 мы получаем, что (приведённые) гомологии дополнения $S^3 L$ не равны нулю только в размерности 1 и изоморфны $H_1(S^3 K) \cong \mathbb{Z}^n$, то есть, вовсе не зависят от вида зацепления. В то же время фундаментальная группа $\pi_1(S^3 L)$ сильно зависит от «заузленности» зацепления L.
- Γ)* Докажите, что для любого топологического вложения $i\colon S^{n-1}\hookrightarrow S^n$ среди двух компонент связности дополнения $S^n-i(S^{n-1})$ ровно одна неограниченна, а образ $i(S^{n-1})$ является в точности границей каждой из компонент.

- **8.** Найдите гомологии дополнения S^3-M , где M лента Мёбиуса, стандартно вложенная в $\mathbb{R}^3\subset S^3$.
- **9.*** Докажите, что если $A \subset \mathbb{R}^n$ и A гомеоморфно открытому множеству в \mathbb{R}^n , то A открыто. Выведите, что не существует топологических вложений $\mathbb{R}^m \hookrightarrow \mathbb{R}^n$ при m > n.
- **10.*** Докажите, что для открытого подмножества $U \subset \mathbb{R}^n$ выполнено $H_i(U) = 0$ при $i \geqslant n$.
- **11.** Докажите, что для связного клеточного пространства X с $H_1(X) = 0$ существует такое односвязное клеточное пространство X_+ и отображение $X \to X_+$, индуцирующее изоморфизмы на всех гомологиях (*плюс-конструкция*).

Более общо, докажите, что для любой нормальной подгруппы $N \subset \pi_1(X)$, удовлетворяющей [N,N]=N, существует такое клеточное пространство X_+ и отображение $X\to X_+$, индуцирующее изоморфизмы на всех гомологиях и отображение $\pi_1(X)\to \pi_1(X)/N=\pi_1(X_+)$ на фундаментальных группах.

- **12.** Напомним, что для последовательности гомоморфизмов абелевых групп $A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots$ её копредел есть соlim $A_n := (\bigoplus A_n)/N$, где N подгруппа, порождённая всевозможными разностями $a f_k(a)$, где $k \in \mathbb{Z}$, $a \in A_k \subset \bigoplus A_n$ и $f_k(a) \in A_{k+1} \subset \bigoplus A_n$.
- а) Рассмотрим гомоморфизм $\delta \colon \bigoplus A_n \to \bigoplus A_n$, $(a_1, a_2, \ldots) \mapsto (a_1, a_2 f_1(a_1), a_3 f_2(a_2), \ldots)$. Убедитесь, что $\ker \delta = 0$ и $\operatorname{coker} \delta = \operatorname{colim} A_n$, то есть, имеет место короткая точная последовательность

$$0 \to \bigoplus A_n \xrightarrow{\delta} \bigoplus A_n \to \operatorname{colim} A_n \to 0$$

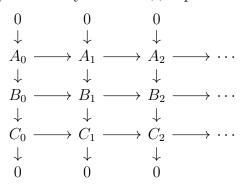
Имеются естественные отображения $\iota_k \colon A_k \hookrightarrow \bigoplus A_n \twoheadrightarrow \operatorname{colim} A_n$.

Проверьте, что гомоморфизм $\operatorname{colim} A_n \to B$ — то же самое, что и набор гомоморфизмов

$$A_n \to B$$
, таких что треугольники $A_n \xrightarrow{} A_{n+1}$ коммутативны.

Покажите, что если отображения $A_n \to A_{n+1}$ являются изоморфизмами при $n \geqslant N$, то отображение $\iota_N \colon A_N \to \operatorname{colim} A_n$ является изоморфизмом.

б) Убедитесь, что colim — функтор из категории последовательностей абелевых групп в абелевы группы, и докажите, что коммутативная диаграмма



с точными столбцами индуцирует короткую точную последовательность

$$0 \to \operatorname{colim} A_n \to \operatorname{colim} B_n \to \operatorname{colim} C_n \to 0$$

в) Докажите, что если для фильтрации $X_0 \subset X_1 \subset X_2 \subset \dots$ пространства $X = \bigcup X_n$ выполнено, что для любого компакта $K \subset X$ существует такое N, что $K \subset X_N$, то гомоморфизмы $\pi_i(X_n) \to \pi_i(X)$, индуцированные включениями, задают изоморфизм со $\lim \pi_i(X_n) \xrightarrow{\cong} \pi_i(X)$. (Для i=1 в определении копредела последовательности не обязательно абелевых групп нужно заменить прямую сумму на свободное произведение, а N — на нормальную подгруппу, порождённую произведениями $a^{-1}f_k(a)$.)

Убедитесь, что это условие на фильтрацию выполнено в случае, когда все пространства X_n являются T_1 -пространствами, а топология на X совпадает с топологией копредела.

г) Аналогично для последовательности гомоморфизмов групп $A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$ определён её предел $\lim A_n = \{(a_n) \in \prod_{n \geqslant 0} A_n \mid a_n = f_n(a_{n+1})\}$

В случае абелевых групп можно также рассмотреть гомоморфизм δ : $\prod A_n \to \prod A_n$, $(a_n) \mapsto (a_n - f_n(a_{n+1}))$. Тогда $\ker \delta = \lim A_n$. В этом случае можно также определить nepeuii (npaeuii) npouseodhuii функтор функтора предела $\lim^1 A_n := \operatorname{coker} \delta = (\prod A_n)/\operatorname{im} \delta$. То есть, имеет место точная последовательность абелевых групп

$$0 \to \lim A_n \to \prod A_n \xrightarrow{\delta} \prod A_n \to \lim^1 A_n \to 0$$

Имеются естественные отображения ρ_k : $\lim A_n \hookrightarrow \prod A_n \twoheadrightarrow A_k$.

Убедитесь, что $\lim u \lim^{1}$ — функторы из категории последовательностей абелевых групп в абелевы группы.

Проверьте, что гомоморфизм $B \to \lim A_n$ — то же самое, что и набор гомоморфизмов

 $B o A_n$, таких что треугольники $\bigwedge^{A_n} \leftarrow A_{n+1}$ коммутативны. Покажите, что если отоб-

ражения $A_n \leftarrow A_{n+1}$ являются изоморфизмами при $n \geqslant N$, то естественное отображение ρ_N : $\lim A_n \to A_N$ является изоморфизмом.

д)* Говорят, что последовательность $A_0 \stackrel{f_0}{\leftarrow} A_1 \stackrel{f_1}{\leftarrow} A_2 \stackrel{f_2}{\leftarrow} \cdots$ удовлетворяет условию Миттаг-Леффлера, если для любого k существует такое $N \geqslant k$, что для всех $n \geqslant N$ образы композиций $A_k \leftarrow A_{k+1} \leftarrow \cdots \leftarrow A_n$ не зависят от n (то есть, с ростом n эти образы в A_k рано или поздно стабилизируются). Проверьте, что это условие выполнено, если начиная с некоторого номера N все отображения $A_n \leftarrow A_{n+1}$ сюръективны, или если все группы A_n конечны, или если все группы A_n — конечномерные векторные пространства.

Докажите, что если последовательность A_n удовлетворяет условию Миттаг-Леффлера, то $\lim^1 A_n = 0$.

Приведите пример последовательности A_n с $\lim^1 A_n \neq 0$.

е)* Докажите, что коммутативная диаграмма

с точными столбцами индуцирует точную последовательность

$$0 \to \lim A_n \to \lim B_n \to \lim C_n \to \lim^1 A_n \to \lim^1 B_n \to \lim^1 C_n \to 0$$

ё)* Докажите, что если имеется последовательность расслоений $X_0 \stackrel{p_0}{\leftarrow} X_1 \stackrel{p_1}{\leftarrow} X_2 \stackrel{p_2}{\leftarrow} \cdots$, то для любого i мы получаем последовательности групп $\pi_i(X_0) \leftarrow \pi_i(X_1) \leftarrow \cdots$ и имеет место короткая точная последовательность

$$0 \to \lim^{1} \pi_{i+1}(X_n) \to \pi_{i}(\lim X_n) \to \lim \pi_{i}(X_n) \to 0,$$

где
$$\lim X_n = \{(x_n) \in \prod X_n \mid x_n = p_n(x_{n+1})\} \subset \prod X_n$$
.

13.* Рассмотрим последовательность функторов h_n , $n \in \mathbb{Z}$ из категории пар клеточных пространств в категорию абелевых групп (при этом допускаются пары (X, \emptyset) и $h_n(X, \emptyset)$

обозначаются просто $h_n(X)$). Она называется неприведённой теорией гомологий, если заданы естественные преобразования $\partial_n \colon h_n(X,A) \to h_{n-1}(A)$ и выполнены следующие условия:

- (1) (аксиома гомотопии) для гомотопных отображений $f \sim g: (X,A) \to (Y,B)$ отображения $f_*: h_n(X,A) \to h_n(Y,B)$ и $g_*: h_n(X,A) \to h_n(Y,B)$ совпадают;
- (2) (аксиома точности) последовательность абелевых групп

$$\cdots \to h_n(A) \xrightarrow{i_*} h_n(X) \xrightarrow{j_*} h_n(X,A) \xrightarrow{\partial_n} h_{n-1}(A) \to \cdots$$

где $i: A \hookrightarrow X$ и $j: X \hookrightarrow (X, A)$ — вложения пар, точна для любой пары (X, A);

- (3) (аксиома вырезания) факторизация $(X,A) \to (X/A,*)$ индуцирует изоморфизмы $h_n(X,A) \stackrel{\cong}{\to} h_n(X/A,*);$
- (4) (аксиома суммы) вложения слагаемых в дизъюнктное объединение $X_{\alpha} \hookrightarrow \bigsqcup X_{\beta}$ индуцируют изоморфизмы $\bigoplus_{\alpha} h_n(X_{\alpha}) \xrightarrow{\cong} h_n(\bigsqcup_{\alpha} X_{\alpha})$.

В свою очередь, последовательность функторов \widetilde{h}_n , $n \in \mathbb{Z}$ из категории пунктированных клеточных пространств в категорию абелевых групп называется $npused\ddot{e}hho\ddot{u}$ теорие \ddot{u} гомологи \ddot{u} , если заданы естественные изоморфизмы $\mathbf{s}_n \colon \widetilde{h}_n(\Sigma X) \cong \widetilde{h}_{n-1}(X)$ и выполнены следующие условия:

- (1) для пунктированно гомотопных отображений $f \sim g \colon X \to Y$ отображения $f_* \colon \widetilde{h}_n(X) \to \widetilde{h}_n(Y)$ и $g_* \colon \widetilde{h}_n(X) \to \widetilde{h}_n(Y)$ равны;
- (2) для любой пунктированной клеточной пары (X,A) последовательности абелевых групп

$$\widetilde{h}_n(A) \xrightarrow{i_*} \widetilde{h}_n(X) \xrightarrow{p_*} \widetilde{h}_n(X/A),$$

индуцированные естественными включением и проекцией, точны (в среднем члене);

- (3) вложения слагаемых в букет $X_{\alpha} \hookrightarrow \bigvee X_{\beta}$ индуцируют изоморфизмы $\bigoplus_{\alpha} \widetilde{h}_n(X_{\alpha}) \stackrel{\cong}{\to} \widetilde{h}_n(\bigvee_{\alpha} X_{\alpha}).$
- а) Докажите, что правила $\widetilde{h}_n(X) = h_n(X, x_0)$ и $h_n(X, A) = \widetilde{h}_n(X/A)$ устанавливают естественную биекцию между приведёнными и неприведёнными теориями гомологий.
- **б)** Сформулируйте и докажите для произвольной теории гомологий теорему типа Майера— Виеториса.
- в) Естественным преобразованием теории гомологий называется последовательность естественных преобразований функторов $\phi_n \colon h_n \to h'_n$, коммутирующая с преобразованиями ∂ . Эквивалентно, в терминах приведённых теорий нужно потребовать коммутирования с изоморфизмами надстройки.

Докажите, что если преобразование теорий гомологий является изоморфизмом на точке (то есть, индуцирует изоморфизмы $\phi_n \colon h_n(\mathrm{pt}) \xrightarrow{\cong} h'_n(\mathrm{pt})$ для всех $n \in \mathbb{Z}$), то оно на самом деле является изоморфизмом на всех клеточных пространствах, то есть, просто изоморфизмом теорий гомологий.

- г) Докажите, что если для теории гомологий h_* выполнена *аксиома размерности* $h_n(\mathrm{pt}) = \begin{cases} \mathbb{Z}, & \text{если } n=0 \\ 0, & \text{если } n \neq 0 \end{cases}$, то на самом деле теория h_* изоморфна теории обычных гомологий H_* .
- д) Докажите, что аксиома суммы для конечных дизъюнктных объединений следует из остальных аксиом.

Приведите пример последовательности функторов h_* , удовлетворяющую аксиомам (1)–(3), но не удовлетворяющую аксиоме (4).

 ${f 14.*}$ В этой задаче для простоты X — конечномерное, не более чем счётное, локально конечное клеточное пространство.

Для такого пространства X рассмотрим абелеву группу $C_n^{lf}(X)$ состоящую из бесконечных формальных сумм сингулярных n-мерных симплексов (с целыми коэффициентами) $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$,

удовлетворяющих условию локальной конечности, то есть, для каждой такой бесконечной цепи у любой точки $x \in X$ существует окрестность, пересекающаяся с образами лишь конечного числа сингулярных симплексов σ_{α} . Проверьте, что обычный дифференциал переводит C_n^{lf} в C_{n-1}^{lf} , и следовательно, мы получаем цепной комплекс $C_*^{lf}(X)$. Его гомологии называются гомологиями с локально конечными носителями, или гомологиями с замкнутыми носителями, или гомологиями Бореля-Мура.

- **а)** Докажите, что такие гомологии являются функтором относительно *собственных отображений*, то есть, таких, при которых прообраз компакта компактен.
- **б)** Вычислите $H^{lf}_{\star}(\mathbb{R})$ и $H^{lf}_{\star}(\mathbb{R}-0)$.
- в) Убедитесь, что для компактного X гомологии $H^{lf}_*(X)$ совпадают с обычными гомологиями. Докажите, что гомологии H^{lf}_* не являются функтором относительно произвольных непрерывных отображений.
- г) Докажите гомотопическую инвариантность H_*^{lf} относительно собственных гомотопий (то есть, собственных отображений $X \times I \to Y$).
- д) Докажите, что имеет место «несобственный изоморфизм надстройки» $H_n^{lf}(X) \cong H_{n+1}^{lf}(\mathbb{R} \times X)$.
- е) Докажите, что для открытого подмножества $U \subset X$ (удовлетворяющего всем условиям на наши пространства) существуют естественные гомоморфизмы ограничения $H_i^{lf}(X) \to H_i^{lf}(U)$.
- $\ddot{\mathbf{e}}$) Докажите, что для вложения замкнутого подмножества $F\subset X$ существует длинная точная последовательность локализации

$$\cdots \to H_n^{lf}(F) \to H_n^{lf}(X) \to H_n^{lf}(X-F) \to H_{n-1}^{lf}(F) \to \cdots$$

- ж) Докажите, что если $X\cong Y-K$, где (Y,K) конечная клеточная пара, то $H_i^{lf}(X)\cong H_i(Y,K)$. Следовательно, $H_i^{lf}(X)\cong H_i(Y/K,\mathrm{pt})$ и Y/K одноточечная компактификация X.
- 3) Докажите, что $H^{lf}_*(X)$ можно вычислять с помощью клеточного цепного комплекса пространства X (где также допускаются бесконечные суммы клеток, которые автоматически локально конечные, так как по условию само X локально конечно).
- и) Вычислите H_i^{lf} для ориентированной поверхности рода g без k точек.