Алгебра-3 НМУ

Листок 7, 27 октября 2025 г.

Задача 1. Докажите, что если $k\subset\mathbb{K}\subset\mathbb{L}$ – башня полей, то $\operatorname{degtr}\mathbb{L}/k=\operatorname{degtr}\mathbb{L}/\mathbb{K}+\operatorname{degtr}\mathbb{K}/k.$

Задача 2. Докажите, что факториальное кольцо целозамкнуто.

Задача 3. Пусть $A \subset B$ — целое расширение колец. Докажите, что если $x \in A$ обратим в B, то x обратим в A.

Задача 4. Докажите, что если B_1, \ldots, B_n целы над A, то $\Pi_{i=1}^n B_i$ цело над A.

Задача 5. Найдите целое замыкание кольца $\mathbb Z$ в поле $\mathbb Q(\sqrt{2}); \mathbb Q(\sqrt{5}).$

Задача 6. Существует ли подполе в $\mathbb C$ изоморфное $\mathbb R$, но отличное от $\mathbb R$?

Задача 7. Пусть $G \subset \mathrm{SL}_2(\mathbb{C})$ подгруппа, порожденная матрицами

$$\begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix}, \qquad \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix},$$

где ϵ — первообразный корень из единицы степени n (она называется бинарной группой диэдра). Вычислите кольцо инвариантов $\mathbb{C}[x,y]^G$.

Задача 8. Докажите, что элементарные симметрические многочлены порождают $\mathbb{Z}[x_1,\ldots,x_n]^{S_n}$ над \mathbb{Z} .

Задача 9. Докажите, что симметрические многочлены Ньютона

$$t_k = x_1^k + \ldots + x_n^k$$

алгебраически независимы и порождают $\mathbb{K}[x_1,\ldots,x_n]^{S_n}$ над $\mathbb{K},$ если char $\mathbb{K}>n,$ но не порождают $\mathbb{Z}[x_1,\ldots,x_n]^{S_n}$ над $\mathbb{Z}.$

Задача 10. Многочлен $f(x_1,\ldots,x_n)$ называется кососимметрическим, если $f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=(-1)^{\sigma}f(x_1,\ldots,x_n)$ для всех $\sigma\in S_n$. Покажите, что кососимметрические многочлены образуют модуль над $\mathbb{K}[x_1,\ldots,x_n]^{S_n}$. Докажите, что это свободный модуль ранга 1.

Задача 11. Пусть $\delta(x_1,\ldots,x_n)=\Pi_{i< j}(x_i-x_j)$. Пусть $f(x)=a_n(x-\alpha_1)\ldots(x-\alpha_n)$.

- 1. Докажите, что R(f, f') делится на $\delta(\alpha_1, \ldots, \alpha_n)$.
- 2. Частное $R(f,f')/\delta(\alpha_1,\ldots,\alpha_n)$ является кососимметрическим многочленом от α_1,\ldots,α_n .
- 3. Докажите, что R(f, f') делится на $\delta(\alpha_1, \dots, \alpha_n)^2$.
- 4. Вычислите R(f, f').