- 5. Лекция 5. Идеалы, теорема о гомоморфизмах, евклидовы и факториальные кольца.
- 5.1. Идеалы и фактор-кольца. Пусть R коммутативное кольцо с единицей.

Определение 5.1. Идеал $I \subset R$ – это такое подкольцо в R, что $a \cdot b \in I \ \forall \ a \in R, b \in I$.

Ясно, что идеал задаёт отношение эквивалентности на R, а значит и разбиение кольца R на классы эквивалентности. Обозначим множество классов эквивалентности через R/I, а класс $x \in R$ будем обозначать через [x].

Пример 5.2. $I = n\mathbb{Z} \subset \mathbb{Z}$ – идеал. Классы эквивалентности выглядят так:

$$\{\dots, -n, 0, n, \dots\}$$

 $\{\dots, -n+1, 1, n+1, \dots\}$
 \dots
 $\{\dots, -1, n-1, 2n-1, \dots\}$

Предложение 5.3. R/I – коммутатвное кольцо с единицей:

$$[x] + [y] := [x + y]$$
$$[x] \cdot [y] := [xy]$$

Доказательство. Если $[x_1]=[x_2]$ и $[y_1]=[y_2]$, то $x_1=x_2+i_1,y_1=y_2+i_2$ и $[x_1]+[y_1]=[x_2+y_2+i_1+i_2]=[x_2+y_2]=[x_2]+[y_2]$ $[x_1][y_1]=[x_2y_2+i_1y_2+i_2y_1+i_1i_2]=[x_2y_2]=[x_2][y_2]$

Пример 5.4. Пусть $f \in R[x]$. Тогда $(f) = \{fg \mid g \in \mathbb{k}[x]\}$ – идеал и определено кольцо R[x]/(f). В случае $R = \mathbb{k}$ это кольцо изоморфно кольцу остатков по модулю f.

5.2. Теорема о гомоморфизме.

Предложение 5.5. Пусть $\varphi: R \to S$ – гомоморфизм колец. Тогда

- (1) $\operatorname{Im} \varphi$ подкольцо в S;
- (2) $\operatorname{Ker} \varphi$ идеал в R;
- (3) $R/\ker\varphi\simeq\operatorname{Im}\varphi$

Доказательство. (1) Если $y_1 = f(x_1)$ и $y_2 = f(x_2)$, то $y_1 + y_2 = f(x_1) + f(x_2) = f(x_1 + x_2)$ и $y_1 y_2 = f(x_1) f(x_2) = f(x_1 x_2)$.

- (2) Если $f(x_1) = f(x_2) = 0$, то $f(x_1 + x_2) = f(x_1) + f(x_2) = 0$. Если $f(x_1) = 0$ и $r \in R_1$, то $f(rx_1) = f(r)f(x_1) = 0$.
- (3) Определим отображение

$$f:R/\ker\varphi\to\operatorname{Im}\varphi,[x]\mapsto f(x)$$

Это отображение корректно определено: если $[x_1] = [x_2]$, то $x_1 = x_2 + r$, где $r \in \ker \varphi$. Тогда $f(x_2) = f(x_1 + r) = f(x_1) + f(r) = f(x_1)$. Является гомоморфизмом: $f([x_1] + [x_2]) = f([x_1 + x_2]) = f(x_1) + f([x_2])$. Аналогично для умножения.

Является биекций: Если $f([x_1]) = 0$, то $x_1 \in \ker \varphi$, а значит $[x_1] = 0$ в $R/\ker \varphi$. Если $y \in \operatorname{Im} \varphi$, то существует $x \in R_1$ такой, что f(x) = y, а значит f([x]) = y.

Примеры. 1) Пусть $L \supset \mathbb{k}$, $\alpha \in L$ поля и $m_{\alpha}(x) \in \mathbb{k}[x]$ — минимальный многочлен элемента α . Рассмотрим отображение $f : \mathbb{k}[x] \to L, f(x) \mapsto f(\alpha)$. Ясно, что $\operatorname{Im} f = \{f(\alpha) \mid f \in \mathbb{k}[x]\} := \mathbb{k}[\alpha] \subset L$. Более того, f — гомоморфизм. Тогда

$$\mathbb{k}[\alpha] \simeq \mathbb{k}[x]/(m_{\alpha}(x)).$$

В частности, $\mathbb{k}[\alpha]$ – поле, так как $m_{\alpha}(x)$ неприводим.

- 2) Рассмотрим отображение $f: \mathbb{Z} \to \mathbb{Z}[i]/(1+3i), n \mapsto [n]$. Ясно, что f гомоморфизм. Более того, $i-3 \in (1+3i)$, значит, отображение f сюръективно. При этом N(1+3i) = 10, а значит если [n] = 0, то n = (1+3i)(a+bi) и $a^2 + b^2 = 1$, а значит $n = 10k, k \in \mathbb{Z}$. Отсюда $\mathbb{Z}/(10) \simeq \mathbb{Z}[i]/(1+3i)$.
- 5.3. **Евклидовы кольца и кольца главных идеалов.** Цель данного раздела формализовать понятия деление с остатком и выделить основное свойство, которое использовалось для доказательства факториальности.

Определение 5.6. Евклидово кольцо – это область целостности R в которой задана функция: $N: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ так, что для любых $a,b \in R$ существуют $q,r \in R$ такие, что

$$a = bq + r$$
, $N(r) < N(b)$ или $r = 0$

Примеры евклидовых колец это $\mathbb{Z}, \mathbb{k}[x], \mathbb{Z}[i]$. Пусть R – кольцо и $M \subset R$ – произвольное множество элементов.

Определение 5.7. Идеал порождённый множеством – это

$$< M >= \{a_1r_1 + \ldots + a_nr_n \mid r_i \in R, a_i \in M\}$$

Определение 5.8. Идеал $I \subset R$ называется конечно-порождённым, если существует конечное $M \subset R$ такое, что I = < M >.

Определение 5.9. Кольцо называется нётеровым, если любой идеал в этом кольце конечно-порождён.

Предложение 5.10. Нётеровость эквивалентна условию, что не существует бесконечновозрастающих цепочек идеалов.

Доказательство. Легко видеть, что объединение произвольного семейства идеалов является идеалом. Это означает, что нётеровость кольца влечёт невозможность бесконечной возрастающей цепочки: иначе сможем построить идеал, который не может быть порождён конечным числом элементов. Обратно, если в кольце нет бесконечновозрастающих цепочек, то сможем в любом идеале выбрать конечный порождающий набор.

Примеры. 1) Любое евклидово кольцо нётерово (см. ниже).

- 2) $k[x_1, \ldots, x_n, \ldots]$ кольцо многочленов от бесконечного числа переменных не является нётеровым.
- 3) Кольцо C[0,1] непрерывных вещественнозначных функций на отрезке [0,1] не является нётеровым (упражнение).

Заметим, что в контексте разложения на неприводимые элементы условие нётеровости гарантирует существование разложения на неприводимые множители. Действительно, иначе получили бы бесконечную цепочку возрастающих идеалов.

Теорема Гильберта о базисе утверждает, что кольцо многочленом над нётеровым кольцом является нётеровым.

Определение 5.11. Идеал $I \subset R$ называется главным, если $I = \langle r \rangle := (r)$ для некоторого $r \in R$.

В терминах этих понятий, легко формализовать понятия неприводимого и простого элемента области целостности.

Определение 5.12. Элемент $a \in R$ неприводим, если идеал (a) является максимальным идеалом среди собственных главных.

Определение 5.13. Элемент $p \in R$ является простым, если R/(p) – область целостности.

Определение 5.14. Идеал $I \subset R$ называется простым, если R/I – область целостности

Определение 5.15. Идеал $I \subset R$ называется максимальным, если R/I – поле.

Предложение 5.16. Максимальный идеал является максимальным собственным идеалом в теоретико-множественном смысле.

Доказательство. (->) Пусть R/I – поле. Докажем, что < I, x >= R для любого $x \in R$, отсюда будет следовать максимальность I. Действительно, существует $y \in R$ такое, что $[x] \cdot [y] = [1]$. Это означает, что существует $i \in I$ такой, что xy = 1 + i. Тогда $1 \in < I, x >$, а, значит, < I, x >= R.

(<-) Пусть I – максимальный. Тогда для любого $x \in R$ имеем $\langle x, I \rangle = R$, а значит существует $y \in R$ и $i \in I$ такие, что xy + i = 1, откуда $[x]^{-1} = [y]$.

Несложно видеть, что корректность определения НОД в евклидовом кольце R связана с тем, что для любых a,b идеал (a,b) порождён одним элементом.

Предложение 5.17. Евклидово кольцо является областью главных идеалов.

Доказательство. Пусть R — евклидово и $I \subset R$ — идеал. Пусть $x \in I$ — элемент минимальной нормы. Тогда I = (x). Действительно, если существует $y \in I, y \notin (d)$, то y = dq + r, причём N(r) < N(d) и $r \in I$ — противоречие.

Более того, можно обобщить определение НОД на кольца главных идеалов, а именно, HOД(f,g)=d, если (f,g)=(d). Ясно, что НОД определён однозначно с точностью до умножения на обратимый элемент кольца. Далее, факториальность кольца эквивалентна лемме Евклида, то есть тому факту, что простота = неприводимость в R.

Предложение 5.18. В кольце главных идеалов простота неприводимый элемент прост.

Доказательство. a — неприводим \Longrightarrow (a) — максимальный среди главных \Longrightarrow (a) — максимальный \Longrightarrow R/(a) — поле \Longrightarrow R/(a) — область целостности \Longrightarrow a — простой. \Box

Следствие 5.19. Кольцо главных идеалов факториально.

Подытожим вышесказанное, имеется следующая картинка:

{евклидовы кольца} ⊂ {области главных идеалов} ⊂ {факториальные кольцо}

Все включения тут являются нестрогими: для первого, это, например, кольцо $\mathbb{R}[x,y]/(x^2+y^2+1)$. Для второго $\mathbb{Z}[x]$.

5.4. **Простые идеалы и системы полиномиальных уравнений.** Пусть **№** − поле и рассмотрим систему полиномиальных уравнений

$$f_1(x_1,\ldots,x_n) = \ldots = f_k(x_1,\ldots,x_n) = 0.$$

Определим $R = \mathbb{k}[x_1, \dots, x_n]/(f_1, \dots, f_n)$. Оказывается, имеется биекция между решениями системы и множеством простых идеалов кольца R.

Для того, чтобы придать этому строгий смысл потребуется дать несколько определений. Пусть $L \supset \mathbb{k}$ и имеется решение $\alpha_1, \ldots, \alpha_n \in L$. Тогда определён гомоморфизм $f: R \to L$: им будет $[f] \to f(\alpha_1, \ldots, \alpha_n)$. Отметим, что образ этого гомоморфизма – область целостности, а, значит, ядро – простой идеал. С другой стороны, любой гомоморфизм $f: R \to L$ задаёт решение системы: образы $[x_i]$.

Обратно, любой простой идеал I задаёт гомоморфизм $f:R\to R/I\to \operatorname{frac} R/I$, то есть гомоморфизм $f:R\to L$, где L – некоторое поле. Породим отношение эквивалентности на множестве решений: пусть $R\to L$ – соответствующий решению гомоморфизм, следующим образом. Будем говорить, что $f:R\to L_1$ эквивалентно $g:R\to L_2$ если $L_1\subset L_2$ и $f=i\circ g$, где i – вложение $L_1\to L_2$.

Предложение 5.20. Соответствие $\{$ класс эквивалентности решений системы $\}$ -> $\ker f$, где $f:R\to L$ – соответствующий решению гомоморфизм, является биекцией.