НМУ, Алгебра-1 Листок 4

Степенные ряды, поле частных.

Задача 1. Найдите явное выражение для коэффициентов степенных рядов:

a)
$$\frac{1}{x^3 - x^2 - x + 1}$$
; 6) $\frac{1}{1 + x + x^2}$.

 $x^3 - x^2 - x + 1$ 1 + x + x Задача 2. Найдите первообразную и 2025-ю производную от $\frac{1 + 2x}{1 - 3x - 4x^2}$.

Задача 3. Найдите явное выражения для k-ого члена последовате сти заданной рекуррентно.

а) $a_0 = -5$, $a_1 = 4$, $a_2 = 88$ и $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$; б) $a_0 = 4$, $a_1 = 12$ и $a_n = a_{n-1} + 2a_{n-2} + 2^n$. Задача 4. Найдите производящую функцию последовательности $1^2, 2^2, 3^2, \ldots$

Задача 5. *Число Каталана* C_n – число способов расставить n пар скобок в выражении $a_0a_1\ldots a_n$. В частности, $c_0 = 1$ (соглашение), $c_1 = 1$, $c_2 = 2$, $c_3 = 5$.

- а) Докажите, что $c_n = c_0 c_{n-1} + \ldots + c_{n-1} c_0$.
- б) Пусть $c(x) = \sum_{k \geq 0} c_k x^k$. Докажите, что $c(x)^2 = \frac{c(x)-1}{x}$ и найдите явную формулу для чисел Каталана.
- в) В выпуклом *п*-угольнике проводят максимально возможное число диагоналей так, чтобы они нигде не пересекались, кроме вершин. Сколькими способами это можно сделать?

Задача 6. а) Пусть $e^x = \sum_{i=0}^{\infty} \frac{x^k}{k!} \in \mathbb{Q}[[x]]$. Докажите, что $e^x \notin \mathbb{Q}(x)$. 6) Предъявите такой ряд $f(x) \in \mathbb{Z}[[x]]$ с коэффициентами из нулей и единиц, что $f(x) \notin \mathbb{Q}(x)$.

Задача 7. Опишите поле частных кольца

- а) $\mathbb{Z}[x]$; б) $\mathbb{Q}[[x]]$; в) Докажите, что поле частных $\mathbb{Z}[[x]]$ является подполем в поле $\mathbb{Q}((x))$, но не совпадает с ним;
- \mathbf{r}^*) Докажите, что поле частных кольца $\mathbb{k}[[x,y]]$ является подполем в поле $\mathbb{k}((x))((y))$, но не совпадает

Задача 8. Пусть N(d) — число неприводимых многочленов степени d в $\mathbb{F}_p[x]$ со старшим коэффициентом 1. а) Докажите, что

$$\frac{1}{1-pt} = \prod_{d \ge 1} \left(\frac{1}{1-t^d}\right)^{N(d)}.$$

и выведите из этого равенство $p^n = \sum_{d|n} dN(d)$. б) Пользуясь задачей 7 из Листка 1, найдите явную формулу для N(d) и докажите, что N(d) > 0 для любого d > 0. Это даёт альтернативное доказательство существования конечного поля порядка p^d .

Задача 9*. Последовательность де Бройна с параметрами (n+1,m)— это последовательность длины $(n+1)^m$ из символов $0, 1, \dots, n$, которая содержит в качестве подпоследовательности любую последовательность 1 длины m при записи по кругу. Например, последовательность 221201100 является такой последовательностью для m=n=2. Цель задачи — построить последовательность де Бройна для n+1=p (в частности, p=2).

Пусть $s_0 = 1$, $s_{-1} = \dots s_{-(p-1)} = 0$. Будем строить (бесконечную) последовательность по правилу

$$s_i = a_1 s_{i-1} + \ldots + a_n s_{i-n} \mod p,$$

где $a_i \in \{0,\dots,p-1\}$. Пусть $S(x) = \sum_{k>0} s_k x^k$ – производящая функция.

- а) Докажите, что первая повторяющаяся последовательность длины n это $s_0s_1\dots s_{n-1}$.
- **б)** Пусть $P(x) = 1 a_1 x \ldots a_n x^n \in \mathbb{F}_p[x]$. Докажите, что

$$\frac{1}{P(x)} = S(x)$$

- в) Докажите, что P(x) делит $1-x^k$ тогда и только тогда, когда k- кратное периода последовательности.
- ${\bf r}$) Пусть $P(x) \in \mathbb{F}_p[x]$ неприводимый многочлен степени n со свободным членом равным единице, среди корней которого есть первообразный корень в \mathbb{F}_{p^n} (сродни задаче 5 листка 2). Докажите, что период последовательности равен p^n-1 . Объясните как из полученной последовательности получить последовательность де Бройна. Сколько различных последовательностей де Бройна можно получить этим способом?
- д) Докажите, что $P(x) = 1 + x + x^4 \in \mathbb{F}_2[x]$ подходит под условия предыдущего пункта и постройте соответствующую последовательность де Бройна.

 $^{^{1}}$...из тех же символов