ТОПОЛОГИЯ-2

ЛИСТОЧЕК 5: ГОМОЛОГИИ И ГОМОТОПИЧЕСКИЕ ГРУППЫ

ЛЕКТОР: Г. С. ЧЕРНЫХ

- **1.** Докажите, что для линейно связного пространства X гомоморфизм надстройки $\pi_1(X) \to \pi_2(\Sigma_{\bullet} X)$ является абелианизацией.
- **2.** Приведите пример нестягиваемого клеточного пространства X, у которого все приведённые группы гомологий равны нулю.
- Такое пространство X и точка pt дают пример двух пространств, для которых существуют отображения $X \rightleftharpoons \mathrm{pt}$, индуцирующие изоморфизмы на всех гомологиях, но при этом X и pt не слабо эквивалентны.
- **3.** Докажите, что отображение f между односвязными клеточными пространствами является гомотопической эквивалентностью, если его конус $C(f) := C(X) \cup_f Y$ стягиваем. Приведите пример, когда это неверно для неодносвязных пространств.
- **4.** Докажите, что если отображение $f: X \to Y$ между клеточными пространствами индуцирует изоморфизм на гомологиях, то его надстройка $\Sigma f: \Sigma X \to \Sigma Y$ является гомотопической эквивалентностью (заметьте, что X и Y не обязательно связны).
- **5.** Докажите, что если X (клеточное) пространство типа $K(\pi, 1)$, то абелевы группы $\pi_n(X^n)$, $n \geqslant 2$ являются свободными (здесь $X^n n$ -остов).
- **6. а)** Докажите, что если для односвязного клеточного пространства X выполнено $H_i(X) \cong H_i(S^n)$ для всех i, то $X \simeq S^n$. (Для неодносвязных пространств это неверно! Такие пространства называются гомологическими сферами.)
- **б**) Докажите, что для любого натурального числа n > 1 и любой абелевой группы A существует единственное с точностью до гомотопической эквивалентности односвязное клеточное пространство X, такое что все приведённые группы гомологий X равны нулю, за исключением $H_n(X) = A$. Такое пространство называется пространством Mура M(A, n).
- в)* Докажите, что пространство Мура M(G,1) с $\pi_1(M(G,1)) = G$ существует тогда и только тогда, когда $H_2(K(G,1)) = 0$. Приведите пример группы G, для которой это неверно.

Согласно задаче 10 листочка 2, для любого n пространства Эйленберга–Маклейна задают (вполне точные) функторы $G \to K(G,n)$ из категории групп (абелевых при n > 1) в пунктированную гомотопическую категорию клеточных пространств.

- В свою очередь, можно доказать, что пространства Мура не могут составлять такого функтора, то есть, нельзя определить пространства M(A,n) так, чтобы для любого гомоморфизма $A \to B$ было определено отображение $M(A,n) \to M(B,n)$ и композициям соответствовали композиции (с точностью до гомотопии).
- 7. Докажите, что если n > 1, то $H_{n+1}(K(\pi, n)) = 0$.
- **8. а)** Покажите, что если пространство X является (n-1)-связным при n>1, то гомоморфизм Гуревича $hur:\pi_{n+1}(X)\to H_{n+1}(X)$ сюръективен.
- б) Для линейно связного X докажите, что коядро coker $hur := H_2(X)/hur(\pi_2(X))$ изоморфно группе $H_2(K(\pi_1(X),1))$.

- **9.** Пусть X связное клеточное пространство с $\pi_i(X) = 0$ при 1 < i < n для некоторого $n \geqslant 2$. Докажите, что $H_n(X)/hur(\pi_n(X)) \cong H_n(K(\pi_1(X),1))$.
- **10.** Докажите, что $hur([\alpha, \beta]) = 0$, где $\alpha \in \pi_n(X)$, $\beta \in \pi_k(X)$ и $[\alpha, \beta] \in \pi_{n+k-1}(X)$ их произведение Уайтхеда (см. задачу 15 листочка 2).
- **11.*** Докажите, что группа $\mathbb{Z}/2 \times \mathbb{Z}/2$ не может свободно действовать ни на каких сферах.
- **12.** Пространство Y называется гомотопическим ретрактом пространства X, если существуют отображения $i: Y \to X$, $r \to Y$, такие что композиция $r \circ i$ гомотопна тождественному отображению. Докажите, что если односвязное клеточное пространство Y является гомотопическим ретрактом букета сфер (например, если $Y \lor Z \simeq \bigvee S^{n_i}$ для некоторого пространства Z), то Y также гомотопически эквивалентно букету сфер.
- **13.** Докажите, что если связное клеточное пространство X ретрагируется на своё клеточное подпространство A, то $\Sigma X \simeq \Sigma A \vee \Sigma (X/A)$ (то есть, после надстройки любая ретракция с точностью до гомотопии является вложением прямого слагаемого в букет).
- **14.** Приведите пример такого отображения клеточных пространств $X \to Y$, что оно индуцирует изоморфизм фундаментальных групп и всех групп гомологий, но не индуцирует изоморфизм всех гомотопических групп.
- **15.*** Пусть (X,A) односвязная пара линейно связных пространств. Обозначим через $\pi_2(X,A)/\pi_1(A)$ факторгруппу группы $\pi_2(X,A)$ по нормальной подгруппе, порождённой произведениями $(\gamma \cdot x)x^{-1}$, где $x \in \pi_2(X,A)$, $\gamma \in \pi_1(A)$ и · действие $\pi_1(A) \curvearrowright \pi_2(X,A)$. Тогда гомоморфизм Гуревича определяет гомоморфизм $hur \colon \pi_2(X,A)/\pi_1(A) \to H_2(X,A)$. Докажите, что это изоморфизм.
- **16.** Пусть $f:(X,A)\to (Y,B)$ такое отображение клеточных пар, что ограничение $f\colon A\to B$ и индуцированное факторотображение $X/A\to Y/B$ являются гомотопическими эквивалентностями. Докажите, что в таком случае $f\colon X\to Y$ является гомотопической эквивалентностью, если пространства X и Y односвязны.

Приведите пример, демонстрирующий, что для неодносвязных пространств X и Y это неверно.

- **17.** Докажите, что если конечная группа G имеет конечное представление, в котором число образующих равно числу соотношений, то $H_2(K(G,1)) = 0$. (Гомологии пространства K(G,1) называются гомологиями группы G).
- **18.** Докажите, что если пространство X является m-связным, а Y-n-связным, то их джойн X*Y является (m+n+2)-связным.
- **19.*** Докажите, что букет клеточных пространств $K(G,1) \vee K(H,1)$ является пространством типа K(G*H,1).
- **20.** Докажите, что для клеточного пространства X отображение $[X,S^1] \to \text{Hom}(H_1(X),\mathbb{Z}), f \mapsto (f_*\colon H_1(X) \to H_1(S^1) = \mathbb{Z})$ является биекцией, причём это будет изоморфизм групп, если ввести умножение на $[X,S^1]$ через умножение на группе S^1 . Докажите, что для связных X можно использовать π_1 вместо H_1 .

- **21.** Пусть X односвязное клеточное пространство, причём $H_k(X) = \mathbb{Z}^{\beta_k} \oplus T_k$ конечнопорождённая абелева группа с кручением T_k . Пусть τ_k (минимальное) количество циклических образующих T_k .
- а) Докажите, что тогда X гомотопически эквивалентен клеточному пространству Y с количеством k-мерных клеток равным $\beta_k + \tau_k + \tau_{k-1}$ (для всех k), причём с меньшим количеством k-клеток найти такое Y нельзя.
- $\mathbf{6}$)* Докажите, что для неодносвязного X это неверно.
- **22.** Рассмотрим конечные (n-1)-мерные клеточные пространства X' и Y'. Приклеим к ним n-мерные клетки: $X = X' \cup e^n$, $Y = Y' \cup e^n$. Предположим, что получилось $H_n(X) = \mathbb{Z}$, $H_n(Y) = \mathbb{Z}$.

Выберем внутри n-мерных клеток в X и Y маленькие шарики B_1^n и B_2^n и вырежем их: $X'' = X - B_1^n, Y'' = Y - B_2^n$. Границы вырезанных шариков представляют собой сферы S_1^{n-1} и S_2^{n-1} .

Теперь склеим эти сферы по гомеоморфизму $h: S^{n-1} \cong S_2^{n-1}$, обращающему ориентацию (ориентации на сферах берутся из характеристических отображений, отождествляющих внутренности клеток с \mathbb{R}^n со стандартной ориентацией). Обозначим склейку через $X \# Y = (X - B_1^n) \cup_h (Y - B_2^n)$.

- а) Докажите, что $\chi(X \# Y) = \chi(X) + \chi(Y) \chi(S^n) = \chi(X') + \chi(Y') \chi(S^{n-1}).$
- **б**)* Выразите гомологии X # Y через гомологии X и Y.
- **23.*** Пусть $N \subset G$ нормальная подгруппа с факторгруппой H = G/N. Докажите, что существует расслоение $K(G,1) \to K(H,1)$ со слоем (слабо эквивалентным) K(N,1). Если G абелева, то тоже верно с заменой 1 на произвольное натуральное n. Покажите, что в абелевом случае также существуют расслоения $K(N,n) \to K(G,n)$ со слоем типа K(H,n-1) и расслоения $K(H,n) \to K(N,n+1)$ со слоем типа K(G,n).