НМУ, 2 курс, анализ на многообразиях. Листок 5. Интегрирование дифференциальных форм, метрика, форма объёма. 7.11.2025.

Задача 1. Вычислить интеграл от формы $\Omega = x^2 dy \wedge dz + y^2 dz \wedge dx + z^2 dx \wedge dy$ по области $D = \{-1 < u < 1, -1 < v < 1\}$ на поверхности $x = u + v, \ y = u - v, \ z = uv.$

Напомним, что если $\iota:N\hookrightarrow M$ — подмногообразие, то под интегралом по N формы $\omega\in\Omega(M)$ подразумевается интеграл по N формы $\iota^*\omega$.

Задача 2. Вычислить непосредственно и с помощью теоремы Стокса интегралы

- $1) \ \int_L \frac{y dx x dy}{y^2},$ где Lори
ентированный отрезок от точки (1,2)до точки
 (2,1) в $\mathbb{R}^2;$
- 2) $\oint_L -x^2ydx + xy^2dy$, где L окружность $x^2 + y^2 = R^2$ в \mathbb{R}^2 , пробегаемая в положительном направлении.

Задача 3. Вычислить

$$\oint_L \frac{xdy - ydx}{x^2 + y^2}$$

для *любого* контура L. Как ответ соотносится с теоремой Стокса?

Задача 4. Найти на сфере $\mathbb{S}^2 \subset \mathbb{R}^3$ метрику, индуцированную стандартной метрикой на \mathbb{R}^3 . Найдите с помощью найденной метрики на сфере угол между векторами $\frac{\partial}{\partial \varphi}$ и $\frac{\partial}{\partial \psi}$, где φ , ψ — сферические координаты на сфере, в точке с координатами $\varphi = \frac{\pi}{4}$, $\psi = \frac{\pi}{4}$.

Задача 5. Найти форму объема на двумерной сфере $\mathbb{S}^2\subset\mathbb{R}^3$. Найти площадь (двумерный объём) двумерной сферы $\mathbb{S}^2\subset\mathbb{R}^3$.

Задача 6. Доказать, что на n-мерном многообразии M существует дифференциальная n-форма, не обращающаяся ни в какой точке в ноль, тогда и только тогда, когда M ориентируемо.

Задача 7*. Докажите, что форма объема на единичной сфере $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ получается ограничением на неё формы

$$dV = \sum_{i=1}^{n+1} (-1)^{i-1} x^i dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^{n+1} \in \Omega^n(\mathbb{R}^{n+1}),$$

где x^1, \ldots, x^n — декартовы координаты в \mathbb{R}^{n+1} .

Задача 8. Обозначим через $\mathbb{R}^{1,2}$ пространство \mathbb{R}^3 с координатами (t,x,y) и псевдоримановой метрикой $g=dt^2-dx^2-dy^2$. Введите аналог сферических координат на псевдосфере $t^2-x^2-y^2=1$ и вычислите ограничение на псевдосферу g в этих координатах. Убедитесь, что -g является римановой метрикой.

Рассмотрим стереографическую проекцию верхней чашки псевдосферы из точки (0,0,-1) на единичный диск в плоскости t=0. Будем рассматривать координаты (x,y) на диске как координаты на псевдосфере. Вычислите риманову метрику на псевдосфере в этих координатах.

Задача 9. Отобразим верхнюю полуплоскость $\mathcal{H} = \{z \in \mathbb{C} \colon \mathrm{Im}(z) > 0\}$ на единичный круг с помощью отображения $\varphi(z) = i \frac{z-i}{z+i}$. Убедитесь, что φ — диффеоморфизм и вычислите метрику $\varphi^*(g)$ на \mathcal{H} , где g — метрика из предыдущей задачи.

Задача 10. Можно ли для плотностей определить обратный образ при отображении?