${\rm HMY,\ A}$ лгебра-1 Листок 6

Векторные пространства.

Задача 1. Исключите переменные y_1, \ldots, y_m из двух систем уравнений

$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = y_1 \\ \ldots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = y_m \end{cases} \quad \text{if} \quad \begin{cases} b_{11}y_1 + \ldots + b_{1m}y_m = z_1 \\ \ldots \\ b_{k1}y_1 + \ldots + b_{km}y_m = z_k \end{cases}$$

Докажите, что полученная таким образом матрица коэффициентов C системы $\begin{cases} c_{11}x_1 + \ldots + c_{1n}x_n = z_1 \\ \ldots \\ c_{k1}x_1 + \ldots + c_{kn}x_n = z_k \end{cases}$

является произведением матриц B и A.

Задача 2. Найдите общее решение системы линейных уравнений над $\mathbb Q$ методом Гаусса:

$$\begin{cases}
-9x_1 + 6x_2 + 7x_3 + 10x_4 = 3 \\
-6x_1 + 4x_2 + 2x_3 + 3x_4 = 2 \\
-3x_1 + 2x_2 - 11x_3 - 15x_4 = 1.
\end{cases}$$

Задача 3. Выясните, являются ли линейно зависимыми наборы векторов:

а) $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$; б) $1, \sin x, \cos x, \dots, \sin(nx), \cos(nx)$; в векторном пространстве функций $f \colon \mathbb{R} \to \mathbb{R}$. Здесь $n \in \mathbb{Z}_{>0}$ и $\lambda_i \in \mathbb{R}$ различны.

Задача 4. а) Может ли поле из 27 элементов содержать подполе из 9 элементов? **б)** Для каких p, q, m, n поле из p^n содержит поле из q^m элементов?

Задача 5. Найдите размерность пространства **a)** многочленов степени не превосходящей n от k переменных и однородных многочленов степени n от k переменных;

б) многочленов с вещественными коэффициентами степени не больше n, обращающихся в нуль в точке 3-2i; в) $\mathbb{k}[[t]]$, где \mathbb{k} —не более чем счётное поле; г) \mathbb{R} над \mathbb{Q} .

Задача 6. Образуют ли базис в пространстве $\mathbb{Q}[x]_{\leqslant n}$ многочленов степени не больше n многочлены **a)** $(x-k)^n;$ **б)** $\binom{x}{k} = \frac{x(x-1)...(x-k+1)}{k!},$ где $0 \leqslant k \leqslant n.$

Задача 7. а) Сколько всего имеется в n-мерном векторном пространстве над конечным полем из q элементов k-мерных векторных подпространств?

б) Пусть $\binom{n}{k}_q$ — число k-мерных векторных подпространств в \mathbb{F}_q^n . Найдите $\lim_{q\to 1}\binom{n}{k}_q$.

Задача 8. Пусть $\delta_a^{(k)} \colon \Bbbk[x] \xrightarrow{f \mapsto f^{(k)}(a)} \Bbbk$, $k \geqslant 0$, $a \in \Bbbk$ —линейный функционал, сопоставляющий многочлену его k-ю производную в точке a. Какому формальному ряду отвечает $\delta_a^{(k)}$ при изоморфизме $\Bbbk[x]^* \xrightarrow{\cong} k[[x]]$? Является ли множество этих функционалов линейно независимым при $a \in \Bbbk$ и $k \geqslant 0$?

Определим cnapusahue между векторными пространствами V и W отображение

$$V \times W \xrightarrow{(v,w) \mapsto \langle v,w \rangle} \mathbb{k},$$

которое линейно по каждому аргументу. Спаривание не вырождено, если для любого ненулевого $v \in V$ существует такой $w \in W$, что $\langle v, w \rangle \neq 0$ и то же самое для любого ненулевого $w \in W$.

Задача 9. а) Покажите, что если спаривание не вырождено, то отображение $V \xrightarrow{v \mapsto \langle v, \ \rangle} W^*$ является изоморфизмом.

б) Пусть $D\colon f\mapsto f'$ — опертор дифференцирования на $\mathbb{k}[x]_{\leqslant n}$. Для любого ряда $g(t)\in\mathbb{k}[[t]]$ обозначим через $g(D)\in\mathrm{End}(\mathbb{k}[x]_{\leqslant n})$ соответствующий дифференциальный оператор. Покажите, что операторы вида $g(D)\in\mathrm{End}(\mathbb{k}[x]_{\leqslant n})$ образуют коммутативное подкольцо, изоморфное кольцу вычетов $\mathbb{k}[D]/(D^{n+1})$.

в) Определим спаривание $\mathbb{k}[D]/(D^{n+1}) \times \mathbb{k}[x]_{\leqslant n} \to \mathbb{k}$ формулой

$$\langle g(D), f(x) \rangle \coloneqq [g(D)f](0).$$

Покажите, что это спаривание не вырождено.

г) Опишите оператор $D^* \colon \Bbbk[D]/(D^{n+1}) \to \Bbbk[D]/(D^{n+1})$ двойственный оператору дифференцирования $D \colon \Bbbk[x]_{\leqslant n} \to \Bbbk[x]_{\leqslant n}$. Опишите операторы ∇^* и Δ^* двойственные разностным операторам

$$\nabla \colon f(x) \mapsto f(x) - f(x-1); \qquad \nabla \colon f(x) \mapsto f(x+1) - f(x)$$

на пространстве $\mathbb{k}[x]_{\leqslant n}$.