Листок 6

Задача 6.1. Пусть $a_n \ge 0$ — невозрастающая последовательность. Докажите, что ряд $\sum a_n$ сходится тогда и только тогда, когда сходится ряд $\sum 2^k a_{2^k}$.

 ${f 3}$ адача ${f 6.2.}$ Для каких lpha сходятся ряды?

a)
$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^{\alpha}}$$
 6)
$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n(\ln \ln n)^{\alpha}}$$

Задача 6.3. Найдите

$$\lim_{x \to 0} \frac{\sin(\sinh(x)) - \sinh(\sin(x))}{x^7}$$

Задача 6.4. а) Пусть y > 0. Докажите, что многочлен $x^5 + xy - 1$ имеет ровно один вещественный корень. Сколько корней может быть для произвольного y?

б) Обозначим этот корень через f(y). Найдите асимптотику $f(y) - \frac{1}{y}$ при $y \to +\infty$.

Задача 6.5. Пусть f(x) — дважды непрерывно дифференцируемая функция на отрезке I, причем $f(y)=0, f'(y)\neq 0$ для некоторого $y\in I$. Докажите, что для достаточно малого $\varepsilon>0$ существует константа 1>C>0 такая, что последовательность

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

с условием $|x_0-y|<\varepsilon$ удовлетворяет неравенству $|x_n-y|\leq C^{2^n}$

Задача 6.6. Может ли компактное метрическое пространство содержать свою изометрическую копию? Иными словами, может ли для метрического компакта K существовать отображение $f: K \to K$ такое, что f — небиективная изометрия?

Задача 6.7. Пусть $p \neq q$ — простые числа. Докажите, что $|x-y|_p + |x-y|_q$ — метрика на $\mathbb Z$ и опишите делители нуля в $\mathbb Z_{pq}$ — пополнении $\mathbb Z$ по этой метрике.

Задача 6.8. Для нормированного пространства X обозначим через X^* пространство всех ограниченных линейных функционалов на X, то есть всех линейных отображений $f:X\to\mathbb{R}$, для которых существует C такое, что $|f(x)|\le C||x||$ для всех x. Введём на X^* норму $||f||=\sup_{x\in X\setminus\{0\}}\frac{|f(x)|}{||x||}$. Докажите, что X^* — банахово пространство.

Задача 6.9. При $1 \le p, q \le \infty$ и $\frac{1}{p} + \frac{1}{q} = 1$ установите изометрический изоморфизм $(\ell_p^p)^* \cong \ell_p^q$.

Задача 6.10. Пусть ряд $\sum_{k=0}^{+\infty} a_k$ сходится. Докажите, что

$$\sum_{k=0}^{+\infty} a_k = \lim_{x \to 1-0} A(x),$$

где $A(x) = \sum_{k=0}^{+\infty} a_k x^k$ и, как следствие, найдите суммы

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} \text{ M } \sum_{k=1}^{+\infty} \frac{(-1)^k}{2k-1}.$$