Листок 7

Задача 7.1. Докажите, что $\frac{\pi}{4} = 4 \operatorname{arctg} \frac{1}{5} - \operatorname{arctg} \frac{1}{239}$. Сравните приближение к π , получающееся из трёх первых слагаемых разложения $\operatorname{arctg}(x)$ и формулы выше с приближением $\pi = 4 \operatorname{arctg} 1$, использующим первые 10 слагаемых ряда Тейлора.

Задача 7.2. Вычислите неопределенные интегралы

а)
$$\int x(3-x^2)^{10}dx$$
 б) $\int \frac{dx}{\sqrt[3]{6x-1}}$ в) $\int \frac{x^2}{1+3x^2}dx$ г) $\int e^{\cos(x)}\sin(x)dx$

д)
$$\int \frac{dx}{(1-x^2)^{3/2}}$$
 e) $\int x^n \ln x \, dx$ ж) $\int x \arctan x \, dx$

Задача 7.3. Вычислите определенные интегралы

a)
$$\int_{0}^{\pi} \sin(x) dx$$
 б) $\int_{0}^{1} \sqrt{1 - x^{2}} dx$ в) $\int_{0}^{+\infty} x^{n} e^{-x} dx := \lim_{a \to +\infty} \int_{0}^{a} x^{n} e^{-x} dx$ г) $\int_{0}^{1} \ln \sin(\pi x) dx$

Задача 7.4. При помощи интегралов найдите пределы

a)

$$\lim_{n \to +\infty} \frac{1^p + \ldots + n^p}{n^{p+1}}$$

б)

$$\lim_{n \to +\infty} \frac{\sum_{-n \le k \le n} \ln \left(1 + \frac{k}{n}\right)^2}{n}$$

Задача 7.5. Докажите, что для любого $n \ge 0$ существует и единственен такой многочлен $f_n(x)$, что

$$\int x^n e^x dx = f_n(x)e^x + C$$

Найдите рекуррентную формулу для $f_n(x)$. Вычислите $f_n(0)$ и $f_n(1)$.

Задача 7.6. Докажите, что для чётных n многочлен $f_n(x)$ положителен и имеет единственную точку минимума x_n . Сходится ли последовательность $\frac{f_{2n}(x_{2n})}{(2n)!}$?

Задача 7.7. Пусть f — выпуклая функция на отрезке $I, x_1, \ldots, x_n, y_1, \ldots, y_n \in I$ и для всех $i \leq n$ выполнено $x_i \geq x_{i-1}, x_1 + \ldots + x_i \geq y_1 + \ldots + y_i$. Пусть, кроме того, $x_1 + \ldots + x_n = y_1 + \ldots + y_n$. Докажите, что

$$\sum_{i \le n} f(x_i) \ge \sum_{i \le n} f(y_i).$$

Задача 7.8. Пусть H — гильбертово пространство. Докажите, что оно pавномерно выпукло, то есть для любого $\varepsilon>0$ существует $\delta>0$ такое, что если $x,y\in H$ и $||x||=||y||=1, ||x-y||\geq \varepsilon$, то $\left|\left|\frac{x+y}{2}\right|\right|\leq 1-\delta$.

Задача 7.9. Пусть e_1, \ldots, e_n, \ldots — ортонормированная система, то есть $\langle e_i, e_j \rangle = \delta_{ij}$. Докажите, что для любого $x \in H$ выполнено

$$\sum_{n} \langle x, e_n \rangle^2 \le ||x||^2,$$

причем для всех x достигается равенство тогда и только тогда, линейная оболочка данной системы плотна в H.