НМУ, Алгебра-1 Листок 1

Алгебраические структуры и кольца вычетов.

Задача 1. а) Докажите, что множества \mathbb{Z} и $2\mathbb{Z}$ изоморфны как абелевы группы относительно сложения. Изоморфны ли они как кольца?

б) Изоморфны ли как абелевы группы $(\mathbb{R}, +)$ и $(\mathbb{Q}, +)$? $(\mathbb{Q}, +)$ и $(\mathbb{Z}, +)$?

Задача 2. а) Докажите, что любая подгруппа (\mathbb{Z} , +) имеет вид $n\mathbb{Z}$, где $n \geq 0$.

б) Найдите обратный элемент к [157] в кольце $\mathbb{Z}/235\mathbb{Z}$ и все целые решения уравнения 157x + 235y = 11.

Задача 3. Убедитесь, что $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ является коммутативным кольцом с единицей без делителей нуля (*областью целостности*). Покажите, что это кольцо не является факториальным.

Задача 4. а) Чему равно 17-е натуральное число, дающие остатки 2, 4, 6, 8 от деления на 5, 9, 11, 14?

- **б)** Сколько решений в кольце $\mathbb{Z}/360\mathbb{Z}$ имеет уравнение $x^2 = 2$?
- в) Сколько решений в кольце $\mathbb{Z}/n\mathbb{Z}$ имеет уравнение $x^2 = 1$?

Задача 5. Рассмотрим группу обратимых элементов $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Определим функцию Эйлера формулой $\varphi(n) = |\mathbb{Z}/n\mathbb{Z}^{\times}|$.

- а) Докажите теорему Эйлера: $a^{\varphi(n)}=1$ для любого $a\in(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- б) Покажите что $\varphi(n)=n(1-p_1^{-1})\dots(1-p_k^{-1}),$ где $n=p_1^{\alpha_1}\dots p_k^{\alpha_k},$ p_i —различные простые числа.

Задача 6. Введём на множестве X функций $f\colon \mathbb{Z}_{>0} \to \mathbb{R}$ две операции:

- (1) поточечное сложение: (f+g)(n) = f(n) + g(n);
- (2) свёртка Дирихле: $(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$.
- а) Докажите, что (X, +, *) коммутативное кольцо с единицей (какая функция является единицей этого кольца?). Опишите все обратимые элементы.
- б) Найдите обратный элемент к функции

$$1: \mathbb{Z}_{>0} \xrightarrow{n \mapsto 1} \mathbb{R}.$$

Этот элемент называется функцией Мёбиуса.

Задача 7. а) Пусть ξ — первообразный корень по модулю простого p > 2. Докажите, что ξ или $\xi + p$ является первообразным корнем по модулю p^2 .

- **б**) Докажите, что если ξ первообразный корень по модулю p и p^2 , то ξ первообразный корень по модулю p^k для любого k>0.
- в) Докажите существование первообразного корня по модулю $2p^k$ для всех простых p>2 и всех $k\in\mathbb{N}.$
- г) Покажите, что первообразный корень в $\mathbb{Z}/n\mathbb{Z}$ существует только для $n=2,4,p^k,2p^k$, где p>2 простое, $k\in\mathbb{N}$. Иными словами, группа $(\mathbb{Z}/n\mathbb{Z})^{\times}$ циклическая только при $n=2,4,p^k,2p^k$.
- д) Найдите количество первообразных корней в $\mathbb{Z}/n\mathbb{Z}$. Если a первообразный корень по модулю n, как выражаются все остальные первообразные корни?