ТОПОЛОГИЯ-2 ЛИСТОЧЕК 2: ГОМОТОПИЧЕСКИЕ ГРУППЫ

ЛЕКТОР: Г. С. ЧЕРНЫХ

1. Рассмотрим коммутативную диаграмму групп (и гомоморфизмов)

$$A_{1} \xrightarrow{a_{1}} A_{2} \xrightarrow{a_{2}} A_{3} \xrightarrow{a_{3}} A_{4}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4}$$

$$B_{1} \xrightarrow{b_{1}} B_{2} \xrightarrow{b_{2}} B_{3} \xrightarrow{b_{3}} B_{4}$$

Пусть её строки точны, то есть, образ каждой (горизонтальной) стрелки равен ядру следующей стрелки: $\operatorname{im}(a_i) = \ker a_{i+1}, i = 1, 2,$ и аналогично для b_i .

- **a)** Докажите, что если отображения f_2 и f_4 инъективны, а отображение f_1 сюръективно, то f_3 инъективно.
- **б)** Докажите, что если отображения f_1 и f_3 сюръективны, а отображение f_4 инъективно, то f_2 сюръективно.

В частности, если у нас есть коммутативная диаграмма групп

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

с точными строками, в которой f_1, f_2, f_4, f_5 — изоморфизмы, то f_3 тоже изоморфизм.

2. а) Вспомните, как по пути $\gamma\colon I\to X,\,\gamma(0)=x_0,\,\gamma(1)=x_1$ определяется изоморфизм групп $L_\gamma\colon \pi_n(X,x_1)\to \pi_n(X,x_0),\,$ убедитесь, что он зависит только от класса гомотопии пути γ (с закреплёнными концами) и для компонируемых путей имеет место равенство $L_{\gamma_1}\circ L_{\gamma_2}=L_{\gamma_1\gamma_2}.$ Проверьте, что для гомотопии $F\colon X\times I\to Y$ между отображениями $f,g\colon X\to Y$ имеет место коммутативная диаграмма

$$\pi_n(X, x_0) \xrightarrow{f_*} \pi_n(Y, f(x_0))$$

$$\downarrow^{g_*} L_{\gamma} \uparrow$$

$$\pi_n(Y, g(x_0))$$

где $\gamma(t) = F(x_0, t)$ — путь между $f(x_0)$ и $g(x_0)$.

Выведите, что любая гомотопическая эквивалентность (не обязательно пунктированная) является слабой эквивалентностью.

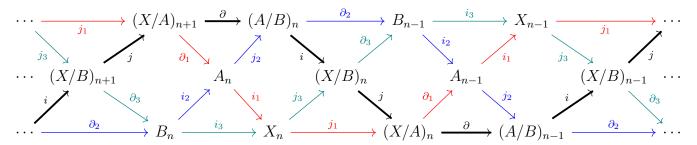
- **б**) В частности, мы получаем (левое) действие $\pi_1(X,x_0)$ на $\pi_n(X,x_0)$. Убедитесь, что изоморфизмы L_γ вообще не зависят от пути \iff это действие тривиально (для любой отмеченной точки \iff для одной отмеченной точки в каждой компоненте линейной связности). То есть, для линейно связного пространства в случае тривиального действия можно считать, что гомотопические группы вовсе не зависят от точки и писать просто $\pi_n(X)$, отождествляя их с помощью единственных изоморфизмов L_γ .
- в) Сформулируйте и докажите аналоги для относительных групп $\pi_n(X, A, x_0)$.
- **3. а)** Согласно предыдущей задаче, мы имеем (левое) действие группы $\pi_1(X, x_0)$ на $\pi_n(X, x_0)$, $n \ge 1$ (и соответственно $\pi_1(A, x_0)$ на $\pi_n(A, x_0)$) и (левое) действие группы $\pi_1(A, x_0)$ на $\pi_n(X, A, x_0)$ (включая пунктированное множество при n = 1). Вспомните также, как группа $\pi_1(X, x_0)$ действует (слева) на пунктированном множестве $\pi_1(X, A, x_0)$.

Проверьте, что для гомотопической длинной точной последовательности пары

$$\cdots \to \pi_n(A, x_0) \xrightarrow{i} \pi_n(X, x_0) \xrightarrow{j} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \to \cdots$$
$$\cdots \to \pi_1(A, x_0) \xrightarrow{i} \pi_1(X, x_0) \xrightarrow{j} \pi_1(X, A, x_0) \xrightarrow{\partial} \pi_0(A, x_0) \xrightarrow{i} \pi_0(X, x_0)$$

выполнено следующее:

- при $n \geqslant 1$ отображения $i_n \colon \pi_n(A, x_0) \to \pi_n(X, x_0)$ являются гомоморфизмами групп и $i_n(\alpha \cdot a) = i_1(\alpha) \cdot i_n(a)$ для $\alpha \in \pi_1(A, x_0)$, $a \in \pi_n(A, x_0)$;
- при $n \geqslant 2$ отображения $j_n \colon \pi_n(X, x_0) \to \pi_n(X, A, x_0)$ являются гомоморфизмами групп и $j_n(i_1(\alpha) \cdot x) = \alpha \cdot j_n(x)$ для $\alpha \in \pi_1(A, x_0), x \in \pi_n(X, x_0)$;
- при $n \ge 2$ отображения $\partial_n \colon \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0)$ являются гомоморфизмами и $\partial_n(\alpha \cdot y) = \alpha \cdot \partial_n(y)$ для $\alpha \in \pi_1(A, x_0), \ y \in \pi_n(X, A, x_0);$
- j_1 : $\pi_1(X, x_0) \to \pi_1(X, A, x_0)$ удовлетворяет $j_1(\omega x) = \omega \cdot j_1(x)$ для $\omega \in \pi_1(X, x_0)$, $x \in \pi_1(X, x_0)$ (здесь ωx умножение в $\pi_1(X, x_1)$, а не действие $\pi_1(X, x_0)$ на себе сопряжением!);
- прообразы элементов множества $\pi_0(A, x_0)$ при отображении ∂_1 совпадают с орбитами действия $\pi_1(X, x_0)$ на $\pi_1(X, A, x_0)$.
- **б)*** Докажите также, что имеет место равенство $\partial_2(\alpha) \cdot \beta = \alpha \beta \alpha^{-1}$ для $\alpha, \beta \in \pi_2(X, A, x_0)$. **в)*** Для произвольного расслоения Гуревича $F \to E \to B$ (с линейно связной базой) определите действие $\pi_1(E, e_0) \curvearrowright \pi_n(F, e_0)$, $n \geqslant 1$, расширяющее с помощью $i \colon F \hookrightarrow E$ действие $\pi_1(F, e_0) \curvearrowright \pi_n(F, e_0)$, то есть, такое, что $i_*(\phi) \cdot f = \phi \cdot f$ для $\phi \in \pi_1(F, e_0)$, $f \in \pi_n(F, e_0)$ (в частности, получаем, что если E стягиваемо, то все действия $\pi_1(F, e_0) \curvearrowright \pi_n(F, e_0)$ тривиальны). Напомним (см. задачу 11 листочка 1), что мы также имеем действие монодромии $\pi_1(B, b_0) \curvearrowright \pi_0(F)$ (так как монодромия не сохраняет отмеченные точки, мы, вообще говоря, не можем определить действия $\pi_1(B, b_0) \curvearrowright \pi_n(F, e_0)$ для $n \geqslant 1$). Для этих действий докажите аналогичные свойства длинной точной последовательности расслоения (обобщая случай
- **4.** Рассмотрим коммутативную диаграмму групп (здесь «Y/X» просто обозначение для некоторых групп, а не какая-то факторконструкция)



«сплетённую» из трёх последовательностей

«расслоения» $P(X, A, x_0) \to A \to X$).

$$\cdots \to (X/A)_{n+1} \xrightarrow{\partial_1} A_n \xrightarrow{i_1} X_n \xrightarrow{j_1} (X/A)_n \xrightarrow{\partial_1} A_{n-1} \to \cdots$$

$$\cdots \to (A/B)_{n+1} \xrightarrow{\partial_2} B_n \xrightarrow{i_2} A_n \xrightarrow{j_2} (A/B)_n \xrightarrow{\partial_2} B_{n-1} \to \cdots$$

$$\cdots \to (X/B)_{n+1} \xrightarrow{\partial_3} B_n \xrightarrow{i_3} X_n \xrightarrow{j_3} (X/B)_n \xrightarrow{\partial_3} B_{n-1} \to \cdots$$

и последовательности

$$(\star) \qquad \cdots \to (X/A)_{n+1} \xrightarrow{\partial} (A/B)_n \xrightarrow{i} (X/B)_n \xrightarrow{j} (X/A)_n \xrightarrow{\partial} (A/B)_{n-1} \to \cdots$$

Докажите, что если красная, синяя и зелёная последовательности точны, а также в последовательности (\star) выполнено $j \circ i = 0$, то последовательность (\star) также точна.

Выведите отсюда гомотопическую длинную точную последовательность тройки (проверьте, что в её конце, где возникают не группы, а множества с отмеченными точками, тоже никаких проблем с точностью не возникает ввиду наличия действий фундаментальных групп из предыдущей задачи).

5. Убедитесь, что диаграмма
$$\xrightarrow{\pi_n(CX,X)} \xrightarrow{\frac{\partial}{\cong}} \pi_{n-1}(X)$$
 коммутативна (здесь CX — конус
$$\pi_n(\Sigma X)$$

над X, а ∂ — гомоморфизм из гомотопической длинной точной последовательности пары (CX,X)).

- **6.** Проверьте, что $\pi_3(D^2,S^1)=0$ в отличие от $\pi_3(D^2/S^1)=\pi_3(S^2)=\mathbb{Z}$. Аналогично представьте сферу S^2 в виде объединения двух полусфер $S^2=D_+^2\cup D_-^2$ и проверьте, что $\pi_3(S^2,D_+^2)=\mathbb{Z}$, а $\pi_3(D_-^2,D_+^2\cap D_-^2)=0$. Эти примеры показывают необходимость ограничения на размерности в теореме о гомотопическом вырезании.
- **7. а)** Проверьте, что $f: X \to Y$ является n-эквивалентностью \iff для любого клеточного пространства Z размерности < n индуцированное отображение $f_*: [Z, X] \to [Z, Y]$ является биекцией, а для любого клеточного пространства Z размерности n сюръекцией (заметьте, что тут непунктированные классы гомотопии, а в определении гомотопических групп пунктированные) \iff то же, но для пунктированных гомотопий.

В частности, отображение $f\colon X\to Y$ является слабой эквивалентностью \iff для любого клеточного пространства Z индуцированное отображение $[Z,X]\xrightarrow{f*} [Z,Y]$ биективно.

б) Выведите из пункта а), что если отображение n-мерных клеточных пространств индуцирует изоморфизм на π_i , $i \leq n$, то оно является гомотопической эквивалентностью.

В частности, если n-мерное клеточное пространство является n-связным, то оно стягиваемо.

в) Выведите из пункта а) обобщение теоремы Фрейденталя: для любого клеточного пространства Z и n-связного пространства X отображение надстройки $\Sigma \colon [Z,X]_{\bullet} \to [\Sigma_{\bullet}Z,\Sigma_{\bullet}X]_{\bullet}$ биективно при $\dim Z < 2n+1$ и сюръективно при $\dim Z = 2n+1$.

В частности, гомоморфизмы $\Sigma \colon [\Sigma^{\hat{N}}_{\bullet}Z, \Sigma^{\hat{N}}_{\bullet}X]_{\bullet} \to [\Sigma^{N+1}_{\bullet}Z, \Sigma^{N+1}_{\bullet}X]_{\bullet}$ становятся эпиморфизмами при $N \geqslant \dim Z - 2n - 1$ и изоморфизмами при $N > \dim Z - 2n - 1$.

 \mathbf{r})* Докажите, что два пространства X и Y слабо эквивалентны \iff функторы $h_X(Z) = [Z, X]$ и $h_Y(Z) = [Z, Y]$ из категории клеточных пространств в категорию множеств естественно изоморфны.

д)* Приведите пример слабой эквивалентности $f: X \to Y$ и клеточного пространства Z, таких что индуцированное отображение $f^*\colon [Y,Z]\to [X,Z]$ не биективно.

- **8. а)** Докажите, что если клеточная пара (X,A) является n-связной, то существует клеточное пространство Z, получающееся из A приклеиванием клеток размерности $\geqslant n+1$, и такое, что пара (Z,A) гомотопически эквивалентна паре (X,A), причём все гомотопии неподвижны на A.
- б) Пусть даны CW-аппроксимации $Q(X) \to X$ и $Q(Y) \to Y$. Докажите, что для любого отображения $X \to Y$ существует единственное с точностью до гомотопии отображение

$$Q(X) \to Q(Y)$$
, превращающее диаграмму
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$
 в коммутативную с точно-
$$X \longrightarrow Y$$

стью до гомотопии.

Выведите, что CW-аппроксимация единственна с точностью до гомотопической эквивалентности.

в) Пусть для пары (X,A) выбрана некоторая CW-аппроксимация подпространства $\phi \colon Q(A) \to A$. Докажите, что тогда существует CW-аппроксимация $\Phi \colon Q(X) \to X$, такая что $Q(A) \subset Q(X)$ — клеточное подпространство и $\Phi|_{Q(A)} = \phi$.

Аналогично проверьте, что для другой пары (Y,B), её аналогичной CW-аппроксимации $(Q(Y),Q(B))\to (Y,B)$ и любого отображения пар $(X,A)\to (Y,B)$ существует единственное с точностью до гомотопии отображение $(Q(X),Q(A))\to (Q(Y),Q(B)))$, превращающее

Покажите, что если пара (X,A) является n-связной, то можно выбрать такую CW-аппроксимацию (Q(X),Q(A)), что Q(X) получается из Q(A) с помощью приклеивания клеток размерности $\geqslant n+1$ (то есть, $Q(A)=Q(X)^n-n$ -остов).

г)* Пусть пространство X покрывается внутренностями своих подпространств A и B: $X = \operatorname{Int}(A) \cup \operatorname{Int}(B)$. Обозначим $C = A \cap B$. Докажите, что тогда существует клеточное пространство Q(X), представляемое в виде объединения двух своих клеточных подпространств Q(A) и Q(B), и отображение $\phi \colon (Q(X); Q(A), Q(B)) \to (X; A, B)$, такое что ограничения $\phi \colon Q(X) \to X$, $\phi \colon Q(A) \to A$, $\phi \colon Q(B) \to B$ и $\phi \colon Q(A) \cap Q(B) \to C$ являются CW-аппроксимациями. Причём, если пара (A, C) является n-связной, то можно выбрать такие CW-аппроксимации, что Q(A) получается из $Q(A) \cap Q(B)$ с помощью приклеивания клеток размерности $\geqslant n+1$ (и аналогично для (B, C)).

Кроме того, эта конструкция также функториальна с точностью до гомотопии, аналогично пунктам а) и б).

- **9. а)** Докажите, что пространства X и Y слабо эквивалентны (см. пункт б) задачи 11 первого листочка) \iff они связаны «зигзагом длины 2» $X \leftarrow Z \rightarrow Y$ из слабых эквивалентностей. **6)*** Приведите пример такой слабой эквивалентности $X \rightarrow Y$, что не существует слабой эквивалентности $Y \rightarrow X$.
- **10.** а) Докажите, что для любого целого числа $n \ge 0$ и группы π (абелевой, если $n \ge 2$, и просто множества, если n = 0) существует клеточное пространство X, имеющее единственную ненулевую гомотопическую группу $\pi_n(X) = \pi$.
- **б)** Докажите, что такое клеточное пространство единственно с точностью до гомотопической эквивалентности.

Пространства с единственной ненулевой n-ли гомотопической группой равной π называются npocmpahcmeamu Эйленберга—Маклейна muna $K(\pi, n)$.

- в) Докажите, что пространства S^1 , $\mathbb{R}P^{\infty}$, $\mathbb{C}P^{\infty}$, а также бутылка Клейна являются пространствами Эйленберга–Маклейна. Убедитесь, что если X пространство Эйленберга–Маклейна типа $K(\pi,n)$, то ΩX пространство Эйленберга—Маклейна типа $K(\pi,n-1)$.
- г)* Докажите, что все замкнутые двумерные поверхности, за исключением S^2 и $\mathbb{R}P^2$, являются пространствами Эйленберга—Маклейна.
- д) Докажите, что если n-мерное клеточное пространство X имеет $\pi_i(X) = 0$ при $2 \le i \le n$, то X является пространством типа $K(\pi_1(X), 1)$.
- е) Докажите, что если X-(n-1)-связное клеточное пространство $(n\geqslant 1)$, а пространство Y линейно связно и $\pi_i(Y)=0$ при i>n, то естественное отображение $[X,Y]_{\bullet}\to \mathrm{Hom}(\pi_n(X,x_0),\pi_n(Y,y_0)),\ f\mapsto f_*$ является биекцией. В частности, если $X-\mathrm{типa}\ K(\pi,n)$, а Y-K(G,n), то $[X,Y]_{\bullet}\cong \mathrm{Hom}(\pi,G)$. Чему в терминах групп π и G соответствует множество непунктированных гомотопических классов [X,Y]?
- **11. а)** Пусть на множестве M есть две бинарные операции: \circ и \star . Предположим, что эти операции обладают двусторонними единицами, 1_{\circ} и 1_{\star} соответственно, и «коммутируют друг с другом», то есть, выполнено $(a \star b) \circ (c \star d) = (a \circ b) \star (c \circ d)$.

Докажите, что тогда эти две операции совпадают (в частности, $1_{\circ} = 1_{\star}$), ассоциативны и коммутативны. (Это явление носит название *аргумент Экманна-Хилтона*)

- **б**) Докажите с помощью пункта а), что при $n \ge 2$ умножения на π_n , определяемые с помощью разных координат (на кубах), совпадают (и, кроме того, ассоциативны и коммутативны). Аналогично для относительных π_n при $n \ge 3$.
- в)* Докажите с помощью пункта а), что для (пунктированного) H-пространства X (то есть, пространства с отмеченной точкой x_0 и (пунктированным) отображением $\mu\colon X\times X\to X$ такими, что композиции $X=X\times\{x_0\}\hookrightarrow X\times X\stackrel{\mu}{\to} X$ и $X=\{x_0\}\times X\hookrightarrow X\times X\stackrel{\mu}{\to} X$ (пунктированно) гомотопны id_X) операция $\pi_n(X,x_0)\times \pi_n(X,x_0)=\pi_n(X\times X,(x_0,x_0))\stackrel{\mu*}{\to} \pi_n(X,x_0)$ совпадает с умножением в гомотопической группе (а также всегда коммутативна и ассоциативна, в частности, $\pi_1(X,x_0)$ коммутативна).

Применяя это к H-пространству петель ΩX , мы опять получаем коммутативность высших гомотопических групп и независимость операции от выбранной координаты.

- г)* Докажите, что вообще на множестве $[S^n,X]_{\bullet}, n \geqslant 2$ существует только одна естественная по X структура группы. В свою очередь, покажите, что на множестве $[S^1,X]_{\bullet}$ существует ровно две естественные групповые структуры: стандартное умножение $u \cdot v$ и умножение «в обратном порядке» $u \star v := v \cdot u$.
- **12.** Рассмотрим отражение $R: S^n \to S^n$ сферы относительно какой-нибудь гиперплоскости, проходящей через её центр. Докажите, что гомотопический класс [R] представляет $-\iota_n$ в гомотопической группе $\pi_n(S^n) \cong \mathbb{Z}$ с образующей $[\mathrm{id}] = \iota_n$.
- **13.** Для клеточного пространства X сравните стандартное действие $\pi_1(X, x_0)$ на гомотопических группах $\pi_n(X, x_0)$ со следующими действиями:
- а) Рассмотрим универсальное накрытие $\widetilde{X} \to X$. Оно индуцирует изоморфизмы $\pi_n(\widetilde{X}) \cong \pi_n(X,x_0), \ n \geqslant 2$ (здесь можно не писать отмеченную точку \widetilde{X} , так как согласно пункту 6) задачи 2 для односвязных пространств фундаментальные группы в различных точках канонически изоморфны). Вспомните, как фундаментальная группа $\pi_1(X,x_0)$ отождествляется с группой $\operatorname{Aut}_X(\widetilde{X})$ автоморфизмов универсального накрытия. Таким образом, мы получаем действие $\pi_1(X,x_0)\cong\operatorname{Aut}_X(\widetilde{X})\curvearrowright \widetilde{X}$, и следовательно, индуцированное действие $\pi_1(X,x_0)\curvearrowright \pi_n(\widetilde{X})\cong \pi_n(X,x_0), \ n\geqslant 2$ (заметим, что действие $\operatorname{Aut}_X(\widetilde{X})\curvearrowright \widetilde{X}$, очевидно, не сохраняет никаких отмеченных точек, однако, опять же в силу того, что \widetilde{X} односвязно, всё корректно).
- **б)** Рассмотрим расслоение путей $P(X,x_0) = \{\gamma\colon I\to X\mid \gamma(0)=x_0\} \xrightarrow{\gamma(1)} X$. Это расслоение Гуревича со слоем ΩX над x_0 . Согласно задаче 11 из листочка 1 мы имеем корректное действие монодромии $\pi_1(X,x_0)\to [\Omega X,\Omega X]$ (которое тоже, конечно, не сохраняет отмеченных точек). В силу естественной биекции $[X,\Omega Y]_{\bullet}\cong [\Sigma_{\bullet}X,Y]_{\bullet}$ мы получаем, что $\pi_n(\Omega X,c_{x_0})\cong \pi_{n+1}(X,x_0)$. Но действие $\pi_1(\Omega X,c_{x_0})\curvearrowright \pi_n(\Omega X,c_{x_0})$ тривиально (в силу пункта в задачи 3, так как $P(X,x_0)$ в расслоении путей стягиваемо, либо в силу пункта в) задачи 15 ниже, так как ΩX является H-пространством относительно умножения петель). Следовательно, согласно пункту б) задачи 2 мы можем не обращать внимания на отмеченные точки в пространстве петель, и тогда монодромия корректно индуцирует действие $\pi_1(X,x_0)\curvearrowright \pi_n(\Omega X)\cong \pi_{n+1}(X,x_0)$.
- в) Согласно задаче 9 первого листочка отображение $C(S^n,X) \to X$, вычисляющее значение в точке $s_0 \in S^n$, является расслоением Гуревича (так как вложение точки $\{s_0\} \hookrightarrow S^n$ корасслоение). Его слоем является пространством $C_{\bullet}(S^n,X)$ пунктированных отображений, и мы получаем действие монодромии $\pi_1(X,x_0) \curvearrowright \pi_0(C_{\bullet}(S^n,X)) = \pi_n(X,x_0)$.
- г)* Согласно пункту а) задачи 8 седьмого листочка по топологии-1 для любого пространства X, для которого вложение отмеченной точки корасслоение, и любого пространства Y мы имеем действие $\pi_1(Y, y_0) \curvearrowright [X, Y]_{\bullet}$. В частности, для $X = S^n$ получаем $\pi_1(Y, y_0) \curvearrowright \pi_n(Y, y_0)$.

- д) Рассмотрим следующий относительный вариант пункта а). Пусть $A \subset X$ клеточное подпространство, причём вложение индуцирует изоморфизм $\pi_1(A) \stackrel{\cong}{\to} \pi_1(X)$. Убедитесь, что тогда $\widetilde{A} = p^{-1}(A) \subset \widetilde{X}$ универсальное накрытие над A, p индуцирует изоморфизмы $\pi_n(\widetilde{X},\widetilde{A}) \stackrel{\cong}{\to} \pi_n(X,A,x_0)$ (причём группы $\pi_n(\widetilde{X},\widetilde{A})$ не зависят от отмеченной точки) и мы получаем действие группы $\pi_1(A,x_0) \cong \pi_1(X,x_0)$ на паре $(\widetilde{X},\widetilde{A})$, а значит, и на группах $\pi_n(\widetilde{X},\widetilde{A}) \cong \pi_n(X,A,x_0)$. Сравните это действие со стандартным действием $\pi_1(A,x_0) \curvearrowright \pi_n(X,A,x_0)$.
- **14.** Вычислите действие группы $\pi_1(X, x_0)$ на $\pi_n(X, x_0)$ для
- a) $X = \mathbb{R}P^n$
- **6)** $X = S^1 \vee S^n$
- **15. а)** Рассмотрим на сферах S^k и S^l ($k, l \ge 1$) минимальные клеточные структуры из двух клеток и индуцированную клеточную структуру из четырёх клеток на произведении $S^k \times S^l$. Рассмотрим приклеивающее отображение для клетки старшей размерности $w \colon S^{k+l-1} \to S^k \vee S^l$.

Убедитесь, что явно это приклеивающее отображение имеет вид

$$S^{k+l-1} = \partial(D^k \times D^l) = S^{l-1} \times D^k \cup_{S^{k-1} \times S^{k-1}} D^l \times S^{k-1} \to S^k \vee S^l,$$

где последнее отображение составлено из двух отображений $S^{l-1} \times D^k \to D^k \to D^k/S^{k-1} = S^k \hookrightarrow S^k \vee S^l$ и $S^{k-1} \times D^l \to D^l/S^{l-1} = S^l \hookrightarrow S^k \vee S^l$ и схлопывает пересечение $S^{k-1} \times S^{l-1}$ в точку.

Тогда произведением Уайтхеда двух сфероидов $f \colon S^k \to X$ и $S^l \to X$ называется сфероид $S^{k+l-1} \xrightarrow{w} S^k \vee S^l \xrightarrow{f \vee g} X$.

Проверьте, что таким образом мы получаем корректное отображение

$$\pi_k(X, x_0) \times \pi_l(X, x_0) \xrightarrow{[-,-]} \pi_{k+l-1}(X, x_0)$$

б) Докажите, что при k=l=1 произведение Уайтхеда совпадает с коммутатором петель в фундаментальной группе: $[\alpha,\beta]=\alpha\beta\alpha^{-1}\beta^{-1}$.

Более общо, докажите, что при k=1 произведение Уайтхеда связано с действием фундаментальной группы на высших гомотопических группах следующим образом: $[\alpha, f] = \alpha \cdot f - f$.

в) Убедитесь, что [f,g]=0 тогда и только тогда, когда отображение $S^k\vee S^l\xrightarrow{f\vee g} X$ продолжается до отображения $S^k\times S^l\to X$.

Выведите, что если X является H-пространством (см. пункт в) задачи 11), то все произведения Уайтхеда в гомотопических группах пространства X равны нулю.

В частности, из предыдущего пункта следует, что все действия фундаментальной группы на гомотопических группах в этом случае тривиальны.

- Γ)* Докажите, что при гомоморфизме надстройки $\Sigma \colon \pi_{k+l-1}(X,x_0) \to \pi_{k+l}(X,x_0)$ все произведения Уайтхеда переходят в ноль.
- д)* Докажите, что произведение Уайтхеда градуированно кососимметрично: $[f,g]=(-1)^{kl}[g,f]$ (при k,l>1).
- **e)*** Докажите, что произведение Уайтхеда билинейно: [f,g+h] = [f,g] + [f,h] (при l>1) и [f+g,h] = [f,h] + [g,h] (при k>1).

На самом деле, оно ещё удовлетворяет градуированному тождеству Якоби и задаёт на гомотопических группах структуру градуированного кольца Ли.

16.* Докажите, что для образующих $\iota_2 \in \pi_2(S^2) = \mathbb{Z}$ (класс тождественного отображения) и $\eta \in \pi_3(S^2) = \mathbb{Z}$ (класс отображения Хопфа $S^3 \to S^2$) выполнено равенство $[\iota_2, \iota_2] = 2\eta$.

В частности, из пункта г) задачи 15 получаем, что $2\eta \in \ker(\Sigma \colon \pi_3(S^2) \twoheadrightarrow \pi_4(S^3))$, и следовательно, первая стабильная гомотопическая группа сфер $\pi_1^s = \pi_4(S^3)$ равна 0 или $\mathbb{Z}/2$.

Согласно «трудной части теоремы Фрейденталя» ядро сюръективного гомоморфизма надстройки Σ : $\pi_{2n-1}(S^n) \to \pi_{2n}(S^{n+1})$ всегда является циклической группой, порождённой скобкой Уайтхеда $[\iota_n, \iota_n]$ (в частности, $\pi_1^s \cong \mathbb{Z}/2$). Эта скобка равна нулю при n=1,3,7 (в силу пункта в) задачи 15, так как в этом случае S^n является H-пространством из умножения на комплексных числах, кватернионах и октавах), имеет порядок 2 при остальных нечётных n(согласно пункту д) задачи 15 $2[\iota_n, \iota_n] = 0$ при нечётных n, то, что $[\iota_n, \iota_n] \neq 0$ при $n \neq 1, 3, 7$ требует отдельного доказательства) и имеет бесконечный порядок для чётных n (существует гомоморфизм $H:\pi_{4k-1}(S^{2k})\to\mathbb{Z}$, называемый *инвариантом Хопфа*, переводящий $[\iota_{2k},\iota_{2k}]$ в $2 \in \mathbb{Z}$).

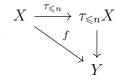
- 17. Для простоты в этой задаче все пространства предполагаются клеточными.
- а) Докажите, что для любого связного клеточного пространства X и любого $n\geqslant 1$ существуют клеточное пространство $\tau_{\leqslant n}X$ и отображение $\tau_{\leqslant n}\colon X\to \tau_{\leqslant n}X$, такие что:
 - (1) $(au_{\leqslant n})_*\colon \pi_i(X)\to \pi_i(au_{\leqslant n}X)$ изоморфизмы при $i\leqslant n$ (2) $\pi_i(au_{\leqslant n}X)=0$ при i>n.

Говорят, что пространство $\tau_{\leq n} X$ получено из X «заклеиванием» всех гомотопических групп

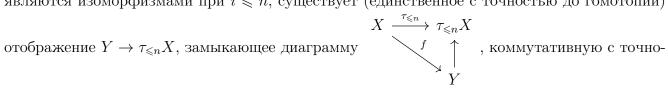
Докажите, что такое пространство единственно с точностью до гомотопической эквивалентности, а отображение — с точностью до гомотопии, и выполнены следующие свойства:

(3) для клеточного пространства Y, такого что $\pi_i(Y) = 0$ при i > n и любого отображения $f\colon X\to Y$, существует единственное с точностью до гомотопии отображение $\tau_{\leq n}X\to Y$,

замыкающее коммутативную (с точностью до гомотопии) диаграмму



(4) для любого отображения $f: X \to Y$ такого, что гомоморфизмы $f_*: \pi_i(X) \to \pi_i(Y)$ являются изоморфизмами при $i \leq n$, существует (единственное с точностью до гомотопии)

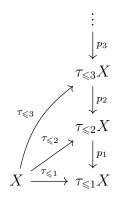


стью до гомотопии;

(5) каждое отображение $X \to Y$ (единственным образом с точностью до гомотопии)

включается в (гомотопически) коммутативную диаграмму
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ Y \longrightarrow \tau_{\leqslant n} Y$$

Проверьте, что построенные отображения можно (единственным образом с точностью до гомотопии) включить в (гомотопически) коммутативную диаграмму



Эта конструкция называется башней Постникова пространства X.

Убедитесь, что пространства $au_{\leqslant n} X$ можно заменить на гомотопически эквивалентные, чтобы добиться ещё и того, чтобы в (по-прежнему гомотопически коммутативной) диаграмме выше отображения $p_n \colon \tau_{\leqslant n+1} X \to \tau_{\leqslant n} X$ были расслоениями Гуревича. Проверьте, что в таком случае слои отображения p_n являются пространствами типа $K(\pi_{n+1}(X), n+1)$.

- $\mathbf{6}$)* Аналогично докажите, что для любого связного клеточного пространства X и любого $n\geqslant 2$ существуют клеточное пространство $au_{\geqslant n}X$ и отображение $au_{\geqslant n}\colon au_{\geqslant n}X\to X$, такие что:
 - (1) $(au_{\geqslant n})_* \colon \pi_i(au_{\geqslant n}X) \to \pi_i(X)$ изоморфизмы при $i \geqslant n$
 - (2) $\pi_i(\tau_{\geq n}X) = 0$ при i < n.

Говорят, что пространство $au_{\geqslant n+1}X$ получено из X «убиванием» всех гомотопических групп до n-ой.

Докажите, что такое пространство единственно с точностью до гомотопической эквивалентности, а отображение — с точностью до гомотопии, и выполнены следующие свойства:

(3) для любого клеточного пространства Y, такого что $\pi_{i < n}(Y) = 0$, и отображения $f\colon Y\to X$ существует отображение $Y\to au_{\geqslant n}X$, замыкающее коммутативную с точностью

$$f\colon Y\to X$$
 существует отооражение $Y\to au_{\geqslant n}X$, замыкающее коммутативную с точностью $au_{\geqslant n}X\xrightarrow{ au_{\geqslant n}}X$ до гомотопии диаграмму f , причём если $\pi_i(Y)=0$ при $i< n+1$, то такое Y

замыкающее отображение $Y \to \tau_{\geqslant n} X$ единственно с точностью до гомотопии;

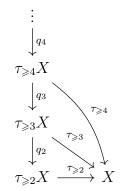
(4) для любого отображения $f: Y \to X$ из клеточного пространства Y такого, что гомоморфизмы $f_*: \pi_i(Y) \to \pi_i(X)$ являются изоморфизмами при $i \geqslant n$, существует (единственное с точностью до гомотопии) отображение $\tau_{\geq n} X \to Y$, замыкающее коммутативную с точно-

стью до гомотопии диаграмму
$$\tau_{\geqslant n} X \xrightarrow{\tau_{\geqslant n}} X$$

(5) каждое отображение $X \to Y$ (единственным образом с точностью до гомотопии)

включается в (гомотопически) коммутативную диаграмму
$$\downarrow \qquad \downarrow \qquad \downarrow \\ \tau_{\geqslant n}Y \longrightarrow Y$$

Убедитесь, что построенные отображения можно (единственным образом с точностью до гомотопии) включить в коммутативную (с точностью до гомотопии) диаграмму



Пространства $\tau_{\geqslant n+1}X$ называются n-связными накрытиями пространства X. Они обобщают (в случае клеточного X) универсальное (1-связное) накрытие. Например, расслоение Хопфа $S^3 \to S^2$ из 3 задачи первого листочка является 2-связным накрытием сферы S^2 .

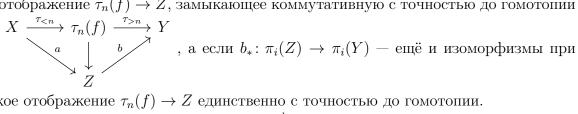
Проверьте, что диаграмму выше можно заменить на гомотопически эквивалентную так, чтобы отображения $q_n\colon au_{\geqslant n+1}X o au_{\geqslant n}X$ были расслоениями Гуревича. Убедитесь, что в таком случае слои отображения q_n являются пространствами типа $K(\pi_n(X), n-1)$.

- **в)*** Докажите, что:
 - (1) $\tau_{\leq n}\tau_{\leq n+m}X \simeq \tau_{\leq n}X$;
 - $(2) \tau_{\geqslant n+m} \tau_{\geqslant n} X \simeq \tau_{\geqslant n+m} X;$
 - (3) $\tau_{\geqslant n}\tau_{\leqslant n+m}X \simeq \tau_{\leqslant n+m}\tau_{\geqslant n}X;$
 - (4) имеется слабая эквивалентность $\tau_{\geqslant n}X \to \mathrm{hofib}(X \to \tau_{\leqslant n-1}X).$

То есть, с точностью до (слабой) гомотопической эквивалентности мы имеем расслоение $au_{\geqslant n}X \to X \to au_{\leqslant n-1}X$. Например, мы получаем $S^3 \simeq \mathrm{hofib}(S^2 = \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty)$ и $\widetilde{X} \simeq$ $hofib(X \to \tau_{\leq 1} X = K(\pi_1(X), 1)).$

- \mathbf{r})* Обобщая предыдущие два пункта, докажите, что для любого отображения $f\colon X\to Y$ между связными клеточными пространствами существует (единственное с точностью до гомотопии) разложение $X \xrightarrow{\tau_{< n}} \tau_n(f) \xrightarrow{\tau_{> n}} Y$, такое что
 - (1) $(\tau_{< n})_*$: $\pi_i(X) \to \pi_i(\tau_n(f))$ изоморфизмы при i < n и эпиморфизм при i = n (то есть, отображение $\tau_{< n} - n$ -связно);
 - $(2) (\tau_{>n})_* : \pi_i(\tau_n(f)) \to \pi_i(Y)$ изоморфизмы при i > n и мономорфизм при i = n (то есть, отображение $\tau_{>n}$ — n-косвязно);
 - (3) композиция $\tau_{>n} \circ \tau_{< n}$ гомотопна f.

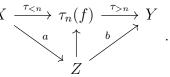
Причём, если есть другое разложение $X \xrightarrow{a} Z \xrightarrow{b} Y$, такое что композиция $(ba)_* : \pi_i(X) \to X$ $\pi_i(Y)$ равна f_* при $i\geqslant n$ и $b_*\colon \pi_i(Z)\to \pi_i(Y)$ является мономорфизмом при $i\geqslant n$, то существует отображение $\tau_n(f) \to Z$, замыкающее коммутативную с точностью до гомотопии



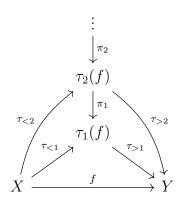
i>n, то такое отображение $\tau_n(f)\to Z$ единственно с точностью до гомотопии.

Аналогично, если есть другое разложение $X \xrightarrow{a} Z \xrightarrow{b} Y$, такое что композиция ba гомотопна f, и отображение a является n-связным, то существует (единственное с точностью до гомотопии) отображение $Z \to \tau_n(f)$, замыкающее коммутативную с точностью до гомотопии

диаграмму



Наконец, все эти отображения опять же можно сложить (единственным с точностью до гомотопии образом) в коммутативную с точностью до гомотопии диаграмму



(называемую иногда башней Уайтхеда отображения f).

Проверьте при этом, что если заменить отображения π_i на расслоения, то слоем π_n будет пространство типа $K(\pi_n(\text{hofib}(f)), n)$.

18. Для расслоения Гуревича $p: E \to B$ и подпространства $A \subset B$ докажите, что p индуцирует изоморфизмы $\pi_n(E, p^{-1}(A)) \to \pi_n(B, A)$.

- 19. Докажите, что для любого клеточного пространства X «бесконечная надстройка» $\Sigma^{\infty}X:=\bigcup_{k\geqslant 0}\Sigma^kX$ (объединение возрастающей цепочки $X\subset\Sigma X\subset\Sigma^2X\subset\cdots$) стягиваема.
- **20. а)*** Докажите, что (для линейно связного X) множества $\pi_{i \leqslant n}(X)$ конечны \iff множества [Z,X] конечны для всех клеточных Z с dim $Z \leqslant n$.
- **б)** Докажите, что связное клеточное пространство X гомотопически эквивалентно клеточному пространству, у которого все остовы конечны \iff группы $\pi_i(X)$ конечно порождены, а $\pi_1(X)$ ещё и конечно представлена.
- **в**)* Докажите, что связное клеточное пространство X гомотопически эквивалентно счётному клеточному пространству \iff все группы $\pi_i(X)$ счётны.
- **21.*** Докажите, что для любой группы G и любой последовательности G-модулей $\{A_n\}_{n\geqslant 2}$ существует пространство X с $\pi_1(X)\cong G$ и $\pi_n(X)\cong A_n$ как G-модули.

эквивалентностей $A \xrightarrow{\cong} A'$, $X \xrightarrow{\cong} X'$, $Y \xrightarrow{\cong} Y'$, таких что индуцированное отображение $X \cup_A Y \to X' \cup_{A'} Y'$ не является даже слабой эквивалентностью.

- **б**)* Докажите однако, что если в условиях пункта а) одно из отображений $A \to X$ и $A \to Y$ и одно из отображений $A' \to X'$ и $A' \to Y'$ являются (замкнутыми) корасслоениями, то индуцированное отображение $X \cup_A Y \to X' \cup_{A'} Y'$ является гомотопической эквивалентностью. **в**)* Аналогично, если одно из отображений $A \to X$ и $A \to Y$ и одно из отображений $A' \to X'$ и $A' \to Y'$ являются вложениями клеточных подпространств, а отображения $A \stackrel{\simeq}{\to} A', X \stackrel{\simeq}{\to} X'$ и $Y \stackrel{\simeq}{\to} Y' -$ слабыми эквивалентностями, то индуцированное отображение $X \cup_A Y \to X' \cup_{A'} Y'$ также является слабой эквивалентностью.

эквивалентностей $B \xrightarrow{\cong} B', X \xrightarrow{\cong} X', Y \xrightarrow{\cong} Y'$, таких что индуцированное отображение $X \times_B Y \to X' \times_{B'} Y'$ не является слабой эквивалентностью.

- д)* Докажите, что если (в условиях пункта г)) одно из отображений $X \to B$ и $Y \to B$ и одно из отображений $X' \to B'$ и $Y' \to B'$ являются расслоениями Гуревича, то индуцированное отображение $X \times_B Y \to X' \times_{B'} Y'$ является гомотопической эквивалентностью.
- е)* Аналогично, если одно из отображений $X \to B$ и $Y \to B$ и одно из отображений $X' \to B'$ и $Y' \to B'$ являются расслоениями Серра, а отображения $B \to B'$, $X \to X'$ и $Y \to Y' -$ слабыми эквивалентностями, то индуцированное отображение $X \times_B Y \to X' \times_{B'} Y'$ является слабой эквивалентностью.

Эти примеры показывают, что хотя обычные (ко)пределы в категории топологических пространств не гомотопически инвариантны, при некоторых условиях они таковыми являются. Оказывается, любую диаграмму можно заменить на гомотопически эквивалентную так, чтобы её (ко)предел был гомотопически инвариантным. Это приводит к понятию гомотопических (ко)пределов.