- 4. Лекция 4. Формальные степенные ряды и производящие функции.
- 4.1. Формальные степенные ряды. Пусть R коммутативное кольцо с единицей.

Определение 4.1. Кольцо формальных степенных рядов с коэффициентами в R это множество

$$R[[x]] := \{ \sum_{n>0} a_n x^n \, | \, a_i \in R \}$$

с операциями

$$\sum_{n\geq 0}a_nx^n+\sum_{n\geq 0}b_nx^n:=\sum_{n\geq 0}(a_n+b_n)x^n;$$

$$\left(\sum_{n\geq 0}a_nx^n\right)\cdot\left(\sum_{n\geq 0}b_nx^n\right):=\left(\sum_{n\geq 0}c_nx^n\right),\quad\text{где}\quad c_n=\sum_{k=0}^na_kb_{n-k}$$

Ясно, что R[[x]] – коммутативное кольцо с единицей.

Определение 4.2.

$$R[[x,y]] := (R[[x]])[[y]]$$

Далее будем рассматривать только $\mathbb{k}[[x]]$, где \mathbb{k} – поле. Пусть $f(x) = \sum_{n \geq 0} a_n x^n, g(x) = \sum_{n \geq 0} b_n x^n \in \mathbb{k}[[x]]$ и попробуем определить ряд f(g(x)). Уже младший коэффициент ряда (при x^0) имеет вид $\sum_{k=0}^{\infty} b_0 a_k$, то есть не определен. Определим подкольцо

$$N = \{ g = \sum_{n \ge 0} b_n x^n \in \mathbb{k}[[x]] \, | \, b_0 = 0 \}.$$

В этом случае, композиция f(g(x)) корректно определена.

4.2. Обратимые элементы и деление с остатком. Можно ли в $\mathbb{k}[[x]]$ делить с остатком?

Лемма 4.3. $f(x) = \sum_{n \geq 0} a_n x^n$ лежит в $\mathbb{k}[[x]]^{\times}$ тогда и только тогда когда $a_0 \neq 0$.

Доказательство. Если

$$(\sum_{n>0} a_n x^n)(\sum_{n>0} b_n x^n) = 1,$$

то необходимо

$$a_0 b_0 = 1$$
 (коэффициент при x^0)

$$a_1b_0 + a_0b_1 = 0$$
 (коэффициент при x^1)

. . .

$$\sum a_k b_{n-k} = 0 \quad (коэффициент при x^n)$$

Если $a_0 \neq 0$, то система имеет решения, а значит элемент обратим. Если $a_0 = 0$, то решений нет уже у первого уравнения.

Пример 4.4. Пусть f(x) = 1 - x. Элемент f – обратим и если $(1 - x)^{-1} = \sum_{n \geq 0} b_n x^n$, то решая систему уравнение получаем $b_i = 1 \ \forall i$, а значит $\frac{1}{1-x} = \sum_{n \geq 0} x^n$ – сродни формуле суммы геометрической прогрессии.

Для деления с остатком определим $\deg \sum_{n\geq 0} a_n x^n = \min_i a_i \neq 0$. Тогда для любых $f,g\in \Bbbk[[x]]$ существуют $q,r\in \Bbbk[[x]]$ такие, что

$$f = qg + r \quad \deg f < \deg g$$

Действительно, если $\deg g > \deg f$, то q = 0, r = f. Если же $\deg f \geq \deg g$, то пусть $f = x^k f_1, g = x^l g_1$, $\deg f_1 = \deg g_1 = 0$. Тогда $f = g(x^{k-l} f_1 g_1^{-1})$. Таким образом, в $\mathbb{k}[[x]]$

возможно деление с остатком, а значит в нем есть НОД, алгоритм Евклида, лемма Евклида и, как следствие, факториальность. Разложение $f \in \mathbb{k}[[x]]$ выглядит как $f = x^k f_1$, deg $f_1 = 0$. Единственный простой элемент – это x.

4.3. Производная и интеграл.

Определение 4.5. Производной

$$f(x) = \sum_{k \ge 0} a_k x^k$$

называется ряд

$$f'(x) = \sum_{n \ge 1} n a_n x^{n-1}$$

Можно показать, что $f'(x)=\left(\frac{f(x+t)-f(x)}{t}\right)_{t=0}$, где $f(x+t)\in \Bbbk[[x,t]]$

Несложно доказать, что все правила дифференцирования верны в этом случае. Например, проверим, что (fg)' = f'g + fg'. Для этого посчитаем коэффициент при x^n в левой и правой части. Слева он равен $(n+1)(\sum_{k=0}^{n+1} a_k b_{n-k})$. Справа

$$\sum_{k=0}^{n} (k+1)a_{k+1}b_{n-k} + \sum_{k=0}^{n} a_k(n-k+1)b_{n-k} = \sum_{k=0}^{n+1} ka_kb_{n-k} + \sum_{k=0}^{n+1} a_k(n-k+1)b_{n-k} = \sum_{k=0}^{n+1} (n+1)a_kb_{n-k}$$

Пример 4.6. Вычислим явно $\frac{1}{(1-x)^k}$.

Заметим, что $\left(\frac{1}{1-x}\right)^{(k-1)} = \frac{(k-1)!}{(1-x)^k}$, значит,

$$\frac{1}{(1-x)^k} = \frac{1}{(k-1)!} \left(\frac{1}{1-x}\right)^{(k-1)} = \frac{1}{(k-1)!} \sum_{n \ge k-1} n(n-1) \dots (n-k+2) x^{n-k+1} = \sum_{n \ge 0} \binom{n+k-1}{k-1} x^n$$

Определение 4.7. Первообразной

$$f(x) = \sum_{k \ge 0} a_k x^k$$

называется ряд

$$\int f = \sum_{n \ge 1} \frac{a_{n-1}}{n} x^n + C \in \mathbb{k}$$

Ясно, что операции дифференцирования и интегрирования взаимнообратны (быть может, с точностью до константы).

Определение 4.8.
$$\ln(1+x) := \int \frac{1}{1+x} = \sum_{k>1} (-1)^{k+1} \frac{x^k}{k}$$

Определим $U = \{ \sum_{k \geq 0} a_k x^k \, | \, a_0 = 1 \}$. Ясно, что U – абелева группа относительно умножения рядов.

Более того, если $g(x) \in U$, то корректно определен ряд $\ln g(x) = \ln(1 + (g(x) - 1))$. При этом $\ln g(x) \in N$.

Предложение 4.9. (1) $ln:(U,\cdot)\to (N,+)$ – изоморфизм абелевых групп. (2) Пусть $\exp(x)=\sum_{n\geq 0}a_nx^n$. Тогда $\ln^{-1}=\exp$.

Доказательство.

Лемма 4.10. Следующие условия на $f, g \in U$ эквивалентны: $f = g, f' = g', \ln f = \ln g, (\ln f)' = (\ln g)'.$

Доказательство. 1 и 2 очевидно, эквивалентны, а, значит, (1 -> 2 -> 3 -> 4). Докажем, (4 -> 1). Заметим, что

$$\frac{f'}{f} = \frac{g'}{g}$$

то есть

$$\frac{f'g - g'f}{fg} = \frac{g}{f} \left(\frac{f}{g}\right)'$$

откуда f = g.

• $\ln e^f = f$ для любого $f \in N$, так как $(\ln e^f)' = \frac{e^f f'}{e^f} = f'$.

• $e^{\ln f} = f$ для любого $f \in N$, так как $\frac{e^{\ln f \frac{f'}{f}}}{e^{\ln f}} = \frac{f'}{f}$.

• $\ln(fg) = \ln f + \ln g$, так как $\ln(fg)' = (\ln f)' + (\ln g)'$.

Определение 4.11. $(1+x)^{\alpha} := \exp(\ln(1+x)\alpha)$.

Ясно, что для любого $f \in U, \alpha \in \mathbb{k}$ определён ряд u^{α} . Несложно проверить, что при этом выполнены все стандартные свойства степени, например, $u^{\alpha+\beta}=u^{\alpha}+u^{\beta}$. Для явного вычисления ряда $(1+x)^{\alpha}=\sum_{n\geq 0}a_nx^n$ заметим, что

$$\frac{((1+x)^{\alpha})'}{(1+x)^{\alpha}} = (\ln(1+x)^{\alpha})' = \alpha \ln(1+x)' = \frac{\alpha}{1+x}$$

Отсюда

$$(1+x)((1+x)^{\alpha})' = \alpha(1+x)^{\alpha},$$

откуда

$$a_k = \frac{\alpha - (k-1)}{k} a_{k-1},$$

то есть

$$a_k = \frac{(\alpha - k + 1) \cdot \ldots \cdot (\alpha - 1)\alpha}{k!}.$$

И

$$(1+x)^{\alpha} = \sum_{k>0} {\alpha \choose k} x^k$$

Заметим, что при $\alpha = n$ получаем

$$\binom{\alpha}{k} = \binom{n}{k}.$$

4.4. **Линейно-рекуррентные последовательности.** Предположим, что бесконечная последовательность $\{a_n\}_{n=0}^{\infty}$ задана рекуррентно, то есть

$$a_k + b_1 a_{k-1} + \ldots + b_k a_0 = 0$$

и значения a_0, \ldots, a_{k-1} определены. Как получить явную формулу для этой последовательности?

Определение 4.12. Производящей функцией бесконечной последовательности $\{a_n\}_{n=0}^{\infty}$ называется формальный степенной ряд $\sum_{n>0} a_n x^n$.

Рассмотрим пример $a_k = a_{k-1} + a_{k-2}, a_0 = a_1 = 1$ – числа Фибоначчи и пусть F(x) – производящая функция нашей последовательности. Тогда несложно видеть, что

$$F(x)(1-x-x^2) = x,$$

а значит,

$$F(x) = \frac{x}{1 - x - x^2}$$

Корни многочлена $1 - x - x^2$ это $x_{12} = \frac{1 \pm \sqrt{5}}{2}$.

Далее, $\frac{1}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1-x_1x} + \frac{1}{1-x_2x} \right)$ откуда получаем, что

$$a_k = \frac{(1+\sqrt{5})^k - (1-\sqrt{5})^k}{2^k \sqrt{5}}$$

В общем случае, если $F(x) = \sum_{n\geq 0} a_n x^n$ производящая функция рекуррентно заданной последовательности, то

$$F(x)(1+b_1x+\ldots+b_kx^n) = 1 + c_1x + \ldots + c_{n-1}x^{n-1}$$

а любую рациональную функцию можно разложить в ряд, используя разложение в простейшие дроби, см. ниже.

4.5. Китайская теорема об остатках.

Предложение 4.13. Пусть $f,g \in \mathbb{k}[x]$ и $g = g_1 \dots g_n$, где НОД $(g_i,g_j) = 1$ для $i \neq j$. Тогда

$$\mathbb{k}[x]/(g) \simeq \mathbb{k}[x]/(g_1) \times \ldots \times \mathbb{k}[x]/(g_n)$$

Доказательство. Определим $\psi: \mathbb{k}[x]/(g) \simeq \mathbb{k}[x]/(g_1) \times \ldots \times \mathbb{k}[x]/(g_n)$ по правилу $[r] \mapsto ([r_1], \ldots, [r_n])$. Из взаимной простоты g_i следует, что ψ – инъекция. Для сюръективности достаточно показать, что в образе лежат все элементы вида $e_i = ([0], \ldots, [0], [1], [0], \ldots, [0])$,где $i = 1, \ldots, n$: если $\psi(x) = e_i$ и $[r] \in \mathbb{k}[x]/(g_i)$, то $\psi(xr) = ([0], \ldots, [0], [r], [0], \ldots, [0])$, а значит, так как $\operatorname{Im} \psi$ – подкольцо, то ψ – сюръекция. Покажем, что e_1 лежит в образе. Пусть $G_1 = g_2 \ldots g_n$. НОД $(g_1, G_1) = 1$, значит, существуют $A, B \in \mathbb{k}[x]$ такие, что

$$Ag_1 + BG_1 = 1$$

Тогда $[BG_1]_{g_1}=[1], [BG_1]_{g_i}=[0], i=2,\ldots,n.$ Отсюда, $[BG_1]_g$ отображается в e_1 . Для остальных i аналогично.

Следствие 4.14. Пусть $f,g \in \mathbb{k}[x]$ и $g = g_1 \dots g_n$, где НОД $(g_i,g_j) = 1$ для $i \neq j$. существуют единственные $h,r_1,\dots,r_n,\deg r_i < \deg g_i$ такие, что

$$\frac{f}{g} = h + \frac{r_1}{g_1} + \ldots + \frac{r_n}{g_n}$$

Предложение 4.15. Пусть $f,g \in \mathbb{k}[x]$ и g — неприводим, $k \in \mathbb{Z}_{>0}$, $\deg f < k \deg g$. Тогда существуют единственные $r_1,\ldots,r_k \in \mathbb{k}[x]$, $\deg r_i < \deg g$ такие, что

$$\frac{f}{g^k} = \frac{r_1}{g} + \frac{r_2}{g^2} + \ldots + \frac{r_n}{g^k}$$

Вышесказанное позволяет эффективно находить явную формулу для линейной рекуррентно заданной последовательности. В частности, если $\mathbb{k}=\mathbb{C}$, то, как мы покажем позже, любой неприводимый многочлен имеет степень 1, а значит, для получения явной формулы достаточно разложить в ряд рациональную дробь $\frac{1}{(x-c)^n}$, что мы уже сделали.