Алгебра-3 НМУ

Листок 5, 13 октября 2025 г.

Задача 1. Любой стягиваемый комплекс есть прямая сумма сдвигов комплексов вида $0 \to M \to M \to 0$.

Задача 2. (5-лемма). Дан морфизм между точными комплексами

$$K^{1} \longrightarrow K^{2} \longrightarrow K^{3} \longrightarrow K^{4} \longrightarrow K^{5}$$

$$f_{1} \downarrow \qquad \qquad \downarrow f_{2} \qquad \qquad \downarrow f_{3} \qquad \qquad \downarrow f_{4} \qquad \qquad \downarrow f_{5}$$

$$L^{1} \longrightarrow L^{2} \longrightarrow L^{3} \longrightarrow L^{4} \longrightarrow L^{5}$$

причём среди f_i все, кроме f_3 , – изоморфизмы. Покажите, что f_3 – тоже изоморфизм.

Задача 3. Сдвиг комплекса $(K^{\bullet}, d^{\bullet})$ – это комплекс $(K[1]^{\bullet}, d[1]^{\bullet})$, где $K[1]^i = K^{i+1}, d[1]^i = -d^{i+1}$. Пусть дан морфизм комплексов $f^{\bullet} \colon K^{\bullet} \to L^{\bullet}$. Определим комплекс $C(f)^{\bullet}$, называемый конусом $f^{\bullet} \colon$ положим $C^i = K^{i+1} \oplus L^i$ и

$$d_C(k^{i+1}, l^i) = (-d(k^{i+1}), f(k^{i+1}) + d(l^i)).$$

Проверьте, что C(f) – комплекс. Определите естественные морфизмы $a^{\bullet} \colon L^{\bullet} \to C(f)^{\bullet}$ и $b^{\bullet} \colon C(f)^{\bullet} \to K[1]^{\bullet}$, покажите, что они образуют точную тройку

$$0 \to L \xrightarrow{a} C(f) \xrightarrow{b} K[1] \to 0.$$

Докажите, что связывающие гомоморфизмы $H(K) \to H(L)$ для указанной точной тройки совпадают с гомоморфизмами, индуцированными f.

Задача 4. Проверьте, что в последовательности

$$K \xrightarrow{f} L \xrightarrow{a} C(f) \xrightarrow{b} K[1] \xrightarrow{f[1]} L[1]$$

композиции af и f[1]b гомотопны нулю.

Задача 5. Проверьте, что морфизм комплексов –

- а) квазиизоморфизм \Leftrightarrow его конус ацикличен;
- b^*) гомотопическая эквивалентность \Leftrightarrow его конус стягиваем.

Задача 6. Пусть A — коммутативное кольцо, а B — алгебра над A. Положим $K_i=0$ при i<-1,

$$K_i = \underbrace{B \otimes_A B \otimes_A \dots \otimes_A B}_{i+2 \text{ pas}}$$

иначе. Дифференциал определим по формуле

$$d_k(b_0 \otimes b_1 \otimes \ldots \otimes b_{k+1}) = \sum_{i=0}^k (-1)^i b_0 \otimes \ldots \otimes b_i b_{i+1} \otimes \ldots \otimes b_{k+1}.$$

- а) Докажите, что получится комплекс. Он называется Ваг-резольвентой.
- b) Найдите его гомологии: покажите, что отображения $h_i: K_i \to K_{i+1}$

Алгебра-3 НМУ

$$h_i(b_0 \otimes \ldots \otimes b_{i+1}) = 1 \otimes b_0 \otimes \ldots \otimes b_{i+1}$$

задают гомотопию тождественного морфизма Ваг-резольвенты нулю.

Задача 7. Определим комплекс модулей $K(x_1,\dots,x_n)_{ullet}$ над алгеброй $A=k[x_1,\dots,x_n]$. Пусть $M=A^{\oplus n}=\oplus_1^n Ae_i$, положим $K_i=\Lambda^i(M)$ и

$$d_k(e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_k}) = \sum_{r=1}^k (-1)^r x_{i_r} e_{i_1} \wedge \ldots \wedge e_{i_{r-1}} \wedge e_{i_{r+1}} \wedge \ldots \wedge e_{i_k}$$

Проверьте, что получится комплекс. Он называется комплексом Кошуля. Двойственным комплексом к комплексу $(K_{\bullet}, d_{\bullet})$ называется комплекс $(K^{*\bullet}, d^{*\bullet})$, для которого $K^{*i} = \text{Hom}_A(K_i, A)$, а $d^{*i} = (d_{i+1})^*$.

Задача 8. Вычислите двойственный комплекс к комплексу Кошуля. Покажем, что в комплексе Кошуля $H_0=k,\ H_i=0$ при i>0.

Задача 9. а) Покажите, что в $K(x_1, \ldots, x_n)$ имеется подкомплекс $K(x_2, \ldots, x_n) \otimes_k k[x_1]$, состоящий из членов, не содержащих e_1 , а фактор по этому подкомплексу изоморфен $e_1 \wedge K(x_2, \ldots, x_n) \otimes_k k[x_1]$.

b) Покажите, что $K(x_1, ..., x_n)$ есть конус морфизма умножения на x_1 :

$$K(x_2,\ldots,x_n)\otimes_k k[x_1] \xrightarrow{x_1} K(x_2,\ldots,x_n)\otimes_k k[x_1].$$

с) Вычислите когомологии $K(x_1, ..., x_n)$.

Задача 10. Пусть K^* и L^* – комплексы. Определим комплекс морфизмов следующим образом. Положим

$$\operatorname{Hom}(K, L)^i = \prod_n \operatorname{Hom}(K^n, L^{n+i}),$$

а дифференциал d^i переводит семейство $(f^n) \in \text{Hom}(K,L)^i$ в семейство $(g^n) \in \text{Hom}(K,L)^{i+1}$,

$$g^{n} = df^{n} - (-1)^{i} f^{n+1} d.$$

- а) Проверьте, что это действительно дифференциал.
- b) Что такое циклы, границы и когомологии в комплексе морфизмов?

Задача 11. Вычислите

- а) $\operatorname{Ext}^i_{\mathbb{Z}}(M,N)$, где M,N конечные либо бесконечные циклические группы.
- c) $\operatorname{Ext}^i_{\mathbb{C}[t]}(M,N)$, где M,N модули вида $\mathbb{C}[t]$ либо $\mathbb{C}[t]/(t-a)^n$.

Задача 12. Покажите, что $\operatorname{Ext}_A^i(M,N)=0$ при i>0, если N – инъективный A-модуль. Покажите, что $\operatorname{Tor}_A^i(M,N)=0$ при i>0, если N – проективный A-модуль.

Задача 13. Вычислите

- а) $\operatorname{Ext}_A^i(k,A)$ и $\operatorname{Ext}_A^i(k,k)$, где $A=k[x_1,\ldots,x_n]$
- с) $\text{Ext}_{A}^{i}(k, A)$ и $\text{Ext}_{A}^{i}(k, k)$, где $A = k[x]/(x^{2})$.