ТОПОЛОГИЯ-2 ЛИСТОЧЕК 3: ОСНОВЫ ГОМОЛОГИЙ

ЛЕКТОР: Г. С. ЧЕРНЫХ

- **1.** Проверьте равенство $\partial^2 = 0$ для дифференциала $\partial = \partial_0 \partial_1 + \cdots + (-1)^n \partial_n$.
- 2. Для короткой точной последовательности цепных комплексов

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$$

рассмотрим цикл $c \in C_n$. Так как j — сюръективно, c = j(b). Так как $\partial_C(c) = 0$, $j\partial_B(b) = \partial_C(j(b)) = \partial_C(c) = 0$. Следовательно, из точности, $\partial_B(b) = i(a)$. Проверьте, что $a \in A_{n-1}$ — цикл, и описанная процедура однозначно и корректно определяет гомоморфизм $\partial: H_n(C) \to H_{n-1}(A)$, $[c] \mapsto [i^{-1}\partial_B j^{-1}(c)]$. Докажите, что получающаяся последовательность гомологий

$$\cdots \to H_n(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \to \cdots$$

точна.

- **3. а)** Для пространства X рассмотрим аугментированный цепной комплекс $\widetilde{C}(X) = \cdots \to C_n(X) \to \cdots C_1(X) \to C_0(X) \stackrel{\varepsilon}{\to} \mathbb{Z} \to 0 \to \cdots$, отличающийся от комплекса сингулярных цепей лишь в размерности -1, в которой $\varepsilon(\sum k_i\sigma_i) = \sum k_i$ для нульмерных сингулярных симплексов σ_i . Постройте естественный по X морфизм цепных комплексов $\widetilde{C}(X) \to C(X, x_0)$, индуцирующий изоморфизм на гомологиях.
- **б)*** Постройте естественный по X морфизм цепных комплексов $\widetilde{C}_*(X) \to \widetilde{C}_{*+1}(\Sigma X)$, индуцирующий изоморфизм надстройки на гомологиях.
- **4.** Рассмотрим сингулярный симплекс $p_n \colon \Delta^n \to S^n$, стягивающий границу $\partial \Delta^n$ в точку. Является ли он образующей гомологий $H_n(S^n) \cong \mathbb{Z}$? Если нет, как это можно исправить?
- **5.** Докажите, что для любой тройки $B\subset A\subset X$ имеет место длинная точная последовательность гомологий

$$\cdots \to H_n(A,B) \to H_n(X,B) \to H_n(X,A) \xrightarrow{\partial} H_{n-1}(A,B) \to \cdots$$

где $\partial: H_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \to H_{n-1}(A,B)$.

В частности, получаем длинную точную последовательность пары для приведённых гомологий.

- **6.** Докажите, что отношение \sim цепной эквивалентности между морфизмами цепных комплексов обладает следующими свойствами:
 - (1) это отношение эквивалентности;
 - (2) оно уважает сложение, то есть, $f \sim f'$ и $g \sim g' \Rightarrow f + g \sim f' + g';$
 - (3) оно уважает композицию, то есть, $f \sim f'$ и $g \sim g' \Rightarrow fg \sim f'g'$.
- 7. Для цепного комплекса (конечной длины) векторных пространств (конечномерных) над полем \Bbbk

$$0 \to C_n \to \cdots \to C_1 \to C_0 \to 0$$

рассмотрим знакопеременную сумму $\chi(C) := \sum_{i=0}^{n} (-1)^{i} \dim_{\mathbb{K}}(C_{i})$. Докажите, что $\chi(C) = \chi(H(C)) := \sum_{i=0}^{n} (-1)^{i} \dim_{\mathbb{K}}(H_{i}(C))$. Верно ли это для конечных комплексов из конечно порождённых абелевых групп, если заменить размерность на ранг (где $\operatorname{rk}(\mathbb{Z}^{n} \oplus \operatorname{кручение}) = n$)?

- **8.** Вычислите симплициальные гомологии для следующих Δ -комплексов:
- а) окружности S^1 с n вершинами и n рёбрами («n-угольник»);
- **б)** какой-нибудь структуры Δ -комплекса на (двумерном) торе и проективной плоскости;

- в) симплекс Δ^2 с отождествлением трёх его вершин в одну точку;
- г) S^n с двумя симплексами Δ^n , склеенными по границе;
- д)* для какой-нибудь структуры Δ -комплекса на $\mathbb{R}P^n$.
- 9. Вычислите гомологии следующих пространств:
- а) трёхмерного тора $T^3 = S^1 \times S^1 \times S^1$;
- б) произвольной замкнутой поверхности (ориентируемой или нет);
- в) факторпространства $\mathbb{R}P^n/\mathbb{R}P^k$ для k < n;
- Γ) пространства $S^1 \times (S^1 \vee S^1)$;
- д)* факторпространства S^3/C_3 , где циклическая группа C_3 из трёх элементов действует на единичной сфере $S^3=\{(z_1,z_2)\in\mathbb{C}^3\mid |z_1|^2+|z_2|^2=1\}\subset\mathbb{C}^3$ посредством умножения обеих координат z_k на $e^{\frac{2\pi i}{3}}$;
- е)* факторпространства S^n/\sim , где отношение эквивалентности склеивает антиподальные точки x и -x на экваториальной подсфере $S^{n-1} \subset S^n$.
- **10. а)** Покажите, что гомотопные отображения пар $f,g\colon (X,A)\to (Y,B)$ индуцируют одинаковые отображения в гомологиях $f_*, g_* \colon H_*(X, A) \to H_*(Y, B)$. В частности, гомотопические эквивалентности пар индуцируют изоморфизмы на относительных гомологиях.
- **б)** Докажите, что вложение $(D^n, S^n) \to (\mathbb{R}^n, \mathbb{R}^n 0)$ индуцирует изоморфизм относительных групп гомологий, но при этом не является гомотопической эквивалентностью пар. Проверьте, что вообще, если пары (X, A) и (Y, B) гомотопически эквивалентны, то и (X, A)и (Y, \overline{B}) — тоже.
- 11. a) Докажите, что вложение $A \hookrightarrow X$ ретракта индуцирует вложение прямого слагаемого на группах гомологий. Верно ли это для гомотопических групп?
- **б)** Докажите, что если в клеточной паре (X,A) размерности всех клеток в X-A не превосходят n, то отображение $H_n(A) \to H_n(X)$ является вложением прямого слагаемого.
- в) Докажите, что если вложение $A \hookrightarrow X$ гомотопно нулю, то $H_n(X,A) \cong H_n(X) \oplus H_{n-1}(A)$, причём вложение первого слагаемого индуцировано вложением $X \hookrightarrow (X, A)$, а проекция на второе слагаемое совпадает с граничным отображением в последовательности пары (X, A).
- **12. а)** Рассмотрим призму $\Delta^n \times I$ с вершинами v_0, \ldots, v_n на нижнем основании и w_0, \ldots, w_n — на верхнем $(w_i - \text{над } v_i)$. Докажите, что симплексы $[v_1, \ldots, v_i, w_i, \ldots, w_n]$ образуют триангуляцию призмы.
- **б)*** Постройте аналогичную триангуляцию произведения симплексов $\Delta^n \times \Delta^k$.
- **13.** а) Проверьте, что для симплекса Δ^n вершинами симплексов его барицентрического подразбиения служат в точности последовательности барицентров цепочек вложенных граней
- разоления служат в то места для симплекса $\Delta^n \supset \Delta^{n-1}_{i_1} \supset \Delta^{n-2}_{i_1,i_2} \supset \cdots \supset \Delta^1_{i_1,\dots,i_{n-1}} \supset \Delta^0_{i_1,\dots,i_n}.$ 6) Докажите, что для симплекса Δ^n с барицентрическими координатами t_0,\dots,t_n симплексы барицентрического подразбиения выделяются условием $t_{\sigma(0)}\leqslant\ldots\leqslant t_{\sigma(n)}$ для перестановок $\sigma \in \Sigma_{n+1}$.
- в) Докажите, что для любого симплекса σ^n барицентрического подразбиения симплекса Δ^n выполнено diam $\sigma^n \leqslant \frac{n}{n+1} \operatorname{diam} \Delta^n$.
- ${f r}$)* Проверьте, что в барицентрическом подразбиении любого Δ -комплексе у каждого симплекса все вершины различны.
- Докажите, что если в Δ -комплексе у каждого симплекса все вершины различны, то его барицентрическое подразбиение является симплициальным комплексом.
- В частности, для любого Δ -комплекса его второе барицентрическое подразбиение является симплициальным комплексом.
- **14. а)** Докажите, что факторизация 1-остова $T^2 \to S^2$ индуцирует изоморфизм на вторых гомологиях. В частности, это отображение не гомотопно нулю. Существуют ли не гомотопные нулю отображения $S^2 \to T^2$?

- **б)** Рассмотрим расслоение Хопфа $S^3 \to S^2$ и стягивание 2-остова трёхмерного тора в точку $T^3 \to S^3$. Докажите, что композиция $T^3 \to S^2$ индуцирует нулевое отображение на всех гомотопических группах и группах гомологий, но само не гомотопно нулю.
- в) Постройте отображение $S^1 \vee S^1 \vee S^2 \to T^2$, индуцирующее изоморфизм на всех группах гомологий, но не являющееся гомотопической эквивалентностью.
- **15.** Докажите, что слабая эквивалентность $f: X \to Y$ индуцирует изоморфизмы $f_*: H_i(X) \to H_i(Y) \ \forall i \geqslant 0$.
- **16.** Докажите, что $H_i(X \times S^n) \cong H_i(X) \oplus H_{i-n}(X)$, причём проекция $X \times S^n \to X$ индуцирует в гомологиях проекцию на первое слагаемое (здесь считается, что $H_{i<0}(X) = 0$).
- **17.** a) Докажите, что для конечных клеточных пространств $\chi(X \times Y) = \chi(X) \times \chi(Y)$.
- **б)** Докажите, что для n-листного накрытия $X \to Y$ между клеточными пространствами $\chi(Y) = n \cdot \chi(X)$.
- в)* Докажите, что для локально тривиального расслоения $X \to Y$ между конечными клеточными пространствами, для которого слой F гомотопически эквивалентен конечному клеточному комплексу, выполнено $\chi(Y) = \chi(F) \cdot \chi(X)$.

На самом деле это верно и для расслоений Серра.

- **18.** Если обозначить через M_g ориентированную замкнутую поверхность рода g, найдите необходимые и достаточные условия на g, g', при которых существует накрытие $M_{g'} \to M_g$.
- 19. Для перестановки $\sigma \in \Sigma_{n+1}$ рассмотрим соответствующее аффинное преобразование $\sigma \colon \Delta^n \to \Delta^n$, индуцированное перестановкой вершин симплекса. Тогда для любого сингулярного симплекса $\varphi \colon \Delta^n \to X$ определён другой сингулярный симплекс $\sigma(\varphi) = \varphi \circ \sigma$, что даёт гомоморфизм $\sigma_\# \colon C_n(X) \to C_n(X)$. Докажите, что если $x \in C_n(X)$ цикл, то $\sigma_\#(x)$ тоже цикл, и более того, разность циклов $\mathrm{sgn}(\sigma)x$ и $\sigma_\#(x)$ является границей (то есть, принадлежит ім $\partial \subset C_n(X)$).
- **20.* а)** Докажите, что структура Δ -комплекса является частным случаем структуры клеточного пространства (в частности, что Δ -комплекс всегда автоматически хаусдорфов).
- **б)** Убедитесь, что для Δ -комплекса X его симплициальный цепной комплекс $(C_*^{\Delta}(X), \partial)$ изоморфен его клеточному цепному комплексу $(C_*^{CW}(X), \partial^{CW})$.
- **21.* а)** Приведите пример замкнутого подмножества $A \subset X$ такого, что группы $H_*(X, A)$ не изоморфны $\widetilde{H}_*(X/A)$.
- б) Приведите пример объединения $X = A \cup B$, для которой не имеет места точная последовательность Майера—Виеториса.
- **22.*** Докажите, что минимальное количество вершин для симплициальной триангуляции тора равно 7, а проективной плоскости 6.
- **23.** а) Докажите, что морфизм цепных комплексов векторных пространств (над каким-то полем) является гомотопической эквивалентностью \iff он является κ вазиизоморфизмом, то есть, индуцирует изоморфизм на всех векторных пространствах гомологий. Выведите, что любой цепной комплекс (C_*, ∂) векторных пространств гомотопически эквивалентен цепному комплексу $(H_*(C), 0)$ (с нулевыми дифференциалами).
- **б)** Приведите пример морфизма цепных комплексов абелевых групп, который является квазиизоморфизмом, но не является гомотопической эквивалентностью.
- в) Докажите, что морфизм цепных комплексов свободных абелевых групп является гомотопической эквивалентностью \iff он является квазиизоморфизмом. Верно ли, что любой цепной комплекс (C_*, ∂) свободных абелевых групп гомотопически эквивалентен цепному комплексу $(H_*(C), 0)$ (с нулевыми дифференциалами).
- **24. а)** Для морфизма цепных комплексов $f:(C_*,\partial_C)\to (U_*,\partial_U)$ рассмотрим абелевы группы $Cone(f)_i=C_{i-1}\oplus U_i$ и гомоморфизмы $\partial_{Cone(f)}\colon Cone(f)_i\to Cone(f)_{i-1}$

$$\partial_{Cone(f)}(c,u) = (-\partial c, \partial(u) + f(c))$$

Проверьте, что $(Cone(f), \partial_{Cone(f)})$ является цепным комплексом и докажите, что он включается в короткую точную последовательность цепных комплексов

$$0 \to U \to Cone(f) \to \Sigma C \to 0$$
,

где ΣC — цепной комплекс с группами $(\Sigma C)_i = C_{i-1}$ и дифференциалом $\partial_{\Sigma C} = -\partial_C$, причём в соответствующей длинной точной последовательности гомологий связывающие гомоморфизмы $\partial \colon H_{i+1}(\Sigma C) = H_i(C) \to H_i(U)$ совпадают с индуцированными гомоморфизмами $f_* \colon H_i(C) \to H_i(U)$.

Выведите, что морфизм f является квазиизоморфизмом \iff цепной комплекс Cone(f) ацикличен, то есть, все группы гомологий $H_i(Cone(f))$ равны нулю.

- **б**)* Докажите, что морфизм f является гомотопической эквивалентностью \iff цепной комплекс Cone(f) cmszuвaeм, то есть, гомотопически эквивалентен нулевому цепному комплексу.
- **25.** а) Выведите точную последовательность Майера—Виеториса для приведённых гомологий. Что происходит, если $A \cap B = \emptyset$?
- **6)*** Пусть $A, B \subset Y, Y = \text{Int}(A) \cup \text{Int}(B)$, и кроме того, $Y \supset X \supset C, D, X = \text{Int}(C) \cup \text{Int}(D)$, причём $C \subset A$ и $D \subset B$. Обозначим $i_{AC} \colon (A \cap B, C \cap D) \hookrightarrow (A, C), i_{BD} \colon (A \cap B, C \cap D) \hookrightarrow (B, D),$ $j_{AC} \colon (A, C) \hookrightarrow (Y, X), j_{BD} \colon (B, D) \hookrightarrow (Y, X)$. Докажите, что имеет место естественная длинная точная последовательность (относительная последовательность Майера-Виеториса)

$$\cdots \to H_n(A \cap B, C \cap D) \xrightarrow{(i_{AC})_* \oplus (i_{BD})_*} H_n(A, C) \oplus H_n(B, D) \xrightarrow{(j_{AC})_* - (j_{BD})_*} H_n(Y, X) \xrightarrow{\delta} H_{n-1}(A \cap B, C \cap D) \to \cdots$$

26. Обозначим $d_i^n \colon \Delta^{n-1} \hookrightarrow \Delta^n$ — вложение i-ой гиперграни, $s_i^n \colon \Delta^n \twoheadrightarrow \Delta^{n-1}$ — аффинная проекция, заданная на вершинах $s_i^n(v_j) = \begin{cases} w_j, & j \leqslant i \\ w_{j-1}, & j > i \end{cases}$ (здесь v_0, \dots, v_n — вершины Δ^n и w_0, \dots, w_{n-1} — вершины Δ^{n-1}).

Для топологического пространства X рассмотрим множества сингулярных симплексов $\operatorname{Sing}^n(X) = \{\sigma \colon \Delta^n \to X\}$ с индуцированными отображениями $(d_i^n)^* \colon \operatorname{Sing}^n(X) \to \operatorname{Sing}^{n-1}(X)$ и $(s_i^n)^* \colon \operatorname{Sing}^{n-1}(X) \to \operatorname{Sing}^n(X)$.

Определим топологические пространства

$$|\operatorname{Sing}(X)| = \left(\bigsqcup_{n \geq 0} \Delta^n \times \operatorname{Sing}^n(X)\right) / \left(\binom{(s_i^n(x), \sigma) \sim (x, (s_i^n)^* \sigma),}{(d_i^n(x), \sigma) \sim (x, (d_i^n)^* \sigma)} \right)$$

И

$$||\operatorname{Sing}(X)|| = \Big(\bigsqcup_{n\geqslant 0} \Delta^n \times \operatorname{Sing}^n(X)\Big) / \Big((d_i^n(x), \sigma) \sim (x, (d_i^n)^*\sigma)\Big)$$

- а) Проверьте, что $|\mathrm{Sing}(X)|$ обладает естественной структурой симплициального комплекса и его цепной комплекс $(C_*^{\Delta}(|\mathrm{Sing}(X)|), \partial)$ изоморфен сингулярному комплексу $(C_*(X), \partial)$.
- **б**) Сингулярные симплексы из объединения образов $\bigcup_{i=0}^n \operatorname{im}(s_i^n)_* \subset \operatorname{Sing}^n(X)$ называются вырожденными. Обозначим порождённую ими свободную абелеву группу $C_n^{\operatorname{deg}}(X)$. Проверьте, что $C_*^{\operatorname{deg}}(X) \subset C_*(X)$ цепной подкомплекс. Факторкомплекс $C_*^N(X) = C_*(X)/C_*^{\operatorname{deg}}(X)$ называется нормализованным сингулярным комплексом. Докажите, что комплекс $C_*^{\operatorname{deg}}(X)$ имеет нулевые гомологии, и следовательно, проекция $C_*(X) \to C_*^N(X)$ индуцирует изоморфизм на гомологиях.
- в)* Проверьте, что $||\mathrm{Sing}(X)||$ обладает естественной структурой Δ -комплекса и его цепной комплекс $(C_*^{\Delta}(||\mathrm{Sing}(X)||),\partial)$ изоморфен нормализованному сингулярному комплексу $(C_*^N(X),\partial)$.
- \mathbf{r})* Проверьте, что естественные отображения $\Delta^n \times \mathrm{Sing}^n(X) \to X$, $(x, \sigma) \mapsto \sigma(x)$ индуцируют коммутативную диаграмму непрерывных отображений

$$\|\mathrm{Sing}(X)\| \xrightarrow{p} |\mathrm{Sing}(X)|$$

$$\downarrow^g \qquad \qquad (\mathrm{здесь}\ p - \mathrm{естественная}\ \mathrm{проекция}).$$

Докажите, что все отображения в этой диаграмме являются слабыми эквивалентностями. В частности, это даёт явную конструкцию строго функториальной CW-аппроксимации пространств.

27.* Рассмотрим множество сингулярных кубов $\mathrm{Sing}^n_\square(X) = \{\kappa\colon I^n \to X\}$ и порождённую им свободную абелеву группу $C_n^\square(X)$. Для $i=1,\dots,n$ и $\varepsilon=0,1$ мы имеем вложения гиперграней $f^n_{\varepsilon,i}\colon I^{i-1}\times \{\varepsilon\}\times I^{n-i-1}\hookrightarrow I^n$ и индуцированные ими $(f^n_{\varepsilon,i})^*\colon \mathrm{Sing}^n_\square(X)\to \mathrm{Sing}^{n-1}_\square(X)$. Определим $\partial^\square\colon C_n^\square(X)\to C_{n-1}^\square(X)$ по формуле

$$\partial(\kappa) = \sum_{i=1}^{n} (-1)^{i-1} ((f_{1,i}^n)^*(\kappa) - (f_{0,i}^n)^*(\kappa))$$

Убедитесь, что (эта формула действительно задаёт ориентированную границу куба и) выполнено равенство $(\partial^{\square})^2 = 0$. Мы получаем *сингулярный кубический комплекс* пространства X.

Вычислите гомологии этого комплекса для $X={\rm pt}$ и убедитесь, что они не равны нулю в старших размерностях.

Чтобы это исправить, аналогично пункту б) задачи 26 рассмотрим проекции $\pi_i^n\colon I^n\to I^{n-1}$ (вдоль i-ой координаты), индуцированные ими отображения $(\pi_i^n)^*\colon \mathrm{Sing}_\square^{n-1}(X)\to \mathrm{Sing}_\square^n(X)$ и группу $C_n^{\square,deg}(X)$, порождённую вырожденными кубами $\bigcup_{i=1}^n \mathrm{im}\,(\pi_i^n)_*\subset \mathrm{Sing}_\square^n(X)$. Проверьте, что мы получаем цепной подкомплекс и определим кубические сингулярные гомологии $H^\square_*(X)$ как гомологии факторкомплекса $C_*^{\square,N}(X)=C_*^\square(X)/C_*^{\square,\deg}(X)$.

Докажите, что $H_*^{\square}(X)$ удовлетворяют всем тем же свойствам, что и $H_*(X)$: функториальность, гомотопическая инвариантность, длинная точная последовательность пары, изоморфизм вырезания, правильные гомологии точки и т.п.

Докажите, что на самом деле имеет место естественный изоморфизм $H^\square_*(X) \stackrel{\cong}{\to} H_*(X)$.