ТОПОЛОГИЯ-2

ЛИСТОЧЕК 6: КОЭФФИЦИЕНТЫ И КОГОМОЛОГИИ

ЛЕКТОР: Г. С. ЧЕРНЫХ

- **1.** Пусть $\cdots \to P_1 \to P_0 \to M \to 0$ проективная резольвента модуля M и $\cdots \to Q_1 \to Q_0 \to N \to 0$ просто точная последовательность модулей. Пусть для гомоморфизма $f \colon M \to N$ существует два его продолжения $F, F' \colon P_{\bullet} \to Q_{\bullet}$ до морфизмов комплексов. Докажите, что тогда эти морфизмы комплексов гомотопны.
- **2. а)** Докажите, что для точной последовательности модулей $M \to N \to K \to 0$ и любого модуля A индуцированная последовательность $0 \to \operatorname{Hom}_R(K,A) \to \operatorname{Hom}_R(N,A) \to \operatorname{Hom}_R(M,A)$ также точна.
- **б)** Докажите, что для точной последовательности модулей $0 \to M \to N \to K$ и любого модуля A индуцированная последовательность $0 \to \operatorname{Hom}_R(A,M) \to \operatorname{Hom}_R(A,N) \to \operatorname{Hom}_R(A,K)$ также точна.
- в) Докажите, что для точной последовательности модулей $M \to N \to K \to 0$ и любого модуля A индуцированная последовательность $M \otimes_R A \to N \otimes_R A \to K \otimes_R A$ также точна.
- 3. Докажите, что
- а) модуль M проективен \iff $\operatorname{Ext}^1_R(M,N)=0$ для всех $N\iff \operatorname{Ext}^{i>0}_R(M,N)=0$ для всех N;
- **б)** модуль M инъективен $\iff \operatorname{Ext}^1_R(N,M) = 0$ для всех $N \iff \operatorname{Ext}^{i>0}_R(N,M) = 0$ для всех N;
- в) модуль M является плоским \iff $\operatorname{Tor}_1^R(M,N)=0$ для всех $N\iff \operatorname{Tor}_{i>0}^R(M,N)=0$ для всех N.
- **4. а)** Докажите, что прямая сумма $\bigoplus P_{\alpha}$ проективна \iff каждое слагаемое P_{α} проективно.
- б) Докажите, что прямое произведение $\prod I_{\alpha}$ инъективно \iff каждый множитель I_{α} инъективен.
- в) Докажите, что прямая сумма $\bigoplus M_{\alpha}$ является плоской \iff каждое слагаемое M_{α} является плоским.
- **5. а)** Докажите, что любой проективный модуль является плоским. Приведите пример плоского не проективного модуля. Приведите пример проективного не свободного модуля.
- **б)*** Рассмотрим кольцо $\mathbb{F}[x,y]$ многочленов над полем. Докажите, что идеал (x,y) не является плоским $\mathbb{F}[x,y]$ -модулем (хотя не имеет кручения).
- **6.** Рассмотрим цепной комплекс R-модулей $\cdots \to C_{i+1} \to C_i \to C_{i-1} \to \cdots$ Докажите, что если M плоский R-модуль, то $H_i(C_* \otimes_R M) \cong H_i(C_*) \otimes_R M$. Аналогично, если M проективный R-модуль, то $H_i(\operatorname{Hom}_R(M,C_*)) \cong \operatorname{Hom}_R(M,H_i(C_*))$. Что насчёт инъективных модулей?
- 7. Докажите, что если A плоский R-модуль, то $\mathrm{Tor}_i^R(A \otimes_R B, C) = A \otimes_R \mathrm{Tor}_i^R(B, C)$. И аналогично, если A проективный R-модуль, то $\mathrm{Ext}_R^i(A \otimes_R B, C) = \mathrm{Hom}_R(A, \mathrm{Ext}_R^i(B, C))$.
- **8.** Докажите, что в группе $H^1(X; \mathbb{Z})$ не может быть кручения. Это показывает, что, в отличие от гомологий, когомологии пространств не могут быть произвольными.

Например, можно также доказать, что единственной ненулевой группой (приведённых) когомологий пространства не может быть счётная, но не конечно порождённая группа, например, \mathbb{Q} .

- **9.** Пусть $f: R \to S$ гомоморфизм колец. Тогда любой S-модуль M можно рассматривать как R-модуль с умножением на скаляры по правилу $r \cdot m := f(r) \cdot m$. В частности, само кольцо S является R-модулем.
- В обратную сторону, если M-R-модуль, то его можно двумя способами превратить в S-модуль: $S\otimes_R M$ и $\operatorname{Hom}_R(S,M)$ с умножениями на скаляры $s\cdot (s'\otimes m)=(ss')\otimes m$ и $(s\cdot \varphi)(s')=\varphi(s's)$ соответственно.
- Докажите, что если P проективный R-модуль, то $S \otimes_R P$ проективный S-модуль, и если I инъективный R-модуль, то $\mathrm{Hom}_R(S,I)$ инъективный S-модуль.
- 10.* Для R-модуля M его dвойственным по Понтрягину модулем называется $M^{\vee} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ с умножением на скаляры из R по правилу: $\varphi \colon M \to \mathbb{Q}/\mathbb{Z}$, $(r \cdot \varphi)(m) := \varphi(rm)$. Заметим, что $M \mapsto M^{\vee}$ контравариантный функтор.
- а) Докажите, что последовательность модулей $A \to B \to C$ точна (в среднем члене) \iff точна двойственная последовательность $C^{\vee} \to B^{\vee} \to A^{\vee}$.
- **б)** Докажите, что модуль M является плоским $\iff M^{\vee}$ инъективен.
- в) Докажите, что естественное отображение вычисления $ev: M \to (M^{\vee})^{\vee}, ev(m)(\varphi) = \varphi(m)$, является инъективным.
- г) Докажите, что для любого модуля M существует вложение $M \hookrightarrow I$ в инъективный модуль.
- В частности, у любого модуля M существует инъективная резольвента $0 \to M \to I^0 \to I^1 \to \cdots$
- **11. а)** Рассмотрим для абелевых групп M и N их проективные резольвенты $P_{\bullet} \to M \to 0$ и $Q_{\bullet} \to N \to 0$. Докажите, что $\operatorname{Tor}_i^{\mathbb{Z}}(M,N) := H_i(P_{\bullet} \otimes_{\mathbb{Z}} N) \cong H_i(M \otimes_{\mathbb{Z}} Q_{\bullet})$.
- $\mathbf{6}$)* Докажите то же для R-модулей.
- в)* Докажите, что $\operatorname{Ext}^i_R(M,N):=H^i(\operatorname{Hom}_R(P_\bullet,N))\cong H^i(\operatorname{Hom}_R(M,I^\bullet))$, где $P_\bullet\to M\to 0$ проективная резольвента для M, а $0\to N\to I^\bullet$ инъективная резольвента для N.
- г) Докажите, что $\operatorname{Tor}_{i}^{\mathbb{Z}}(M,N) \cong H_{i}(F_{\bullet} \otimes_{R} N) \cong H_{i}(M \otimes_{R} F_{\bullet}')$, где F_{\bullet} и F_{\bullet}' резольвенты из плоских абелевых групп для M и N соответственно.
- $\mathbf{д}$)* Докажите то же для R-модулей.
- е) Докажите, что $\operatorname{Tor}_i^{\mathbb{Z}}(M,N) \cong \operatorname{Tor}_i^{\mathbb{Z}}(N,M)$.
- $\ddot{\mathbf{e}}$)* Докажите то же для R-модулей.
- **12.** Докажите, что $\operatorname{Ext}_R^i(\bigoplus M_\alpha, N) \cong \prod \operatorname{Ext}_R^i(M_\alpha, N)$, $\operatorname{Ext}_R^i(M, \prod N_\alpha) \cong \prod \operatorname{Ext}_R^i(M, N_\alpha)$ и $\operatorname{Tor}_i^R(\bigoplus M_\alpha, N) \cong \bigoplus \operatorname{Tor}_i^R(M_\alpha, N)$.
- **13.*** Докажите, что абелева группа A является инъективным \mathbb{Z} -модулем \iff она ∂ елима, то есть, $\forall x \in A \ \forall n \in \mathbb{N} \ \exists y \ \text{т. ч.} \ x = ny.$
- **14.** Для подмножества $S\subset R$, замкнутого относительно умножения (содержащего единицу и не содержащего ноль), рассмотрим фактормножество $S^{-1}R=\{\frac{r}{s}\mid r\in R, s\in S\}/\sim$, где отношение эквивалентности $\frac{r}{s}\sim\frac{r'}{s'}\iff s''(rs'-r's)=0$ для некоторого $s''\in S$.
- Убедитесь, что это кольцо относительно следующих операций: $\left[\frac{r}{s}\right]\cdot\left[\frac{r'}{s'}\right]:=\left[\frac{rr'}{ss'}\right]$ и $\left[\frac{r}{s}\right]+\left[\frac{r'}{s'}\right]:=\left[\frac{rs'+r's}{ss'}\right]$. Мы имеем гомоморфизм колец $R\to S^{-1}R,\ r\mapsto\left[\frac{r}{1}\right]$, который, в частности, превращает $S^{-1}R$ в R-модуль.
- Проверьте, что аналогичную конструкцию можно проделать с любым R-модулем M и получить $S^{-1}R$ -модуль $S^{-1}M$. Более того, $S^{-1}M\cong S^{-1}R\otimes_R M$ (как $S^{-1}R$ -модули) и

sm = 0} (S-кручение в M).

Докажите, что $S^{-1}R$ является плоским R-модулем. Выведите, что $S^{-1}\operatorname{Tor}_i^R(M,N)=\operatorname{Tor}_i^R(S^{-1}M,N).$

- **15. а)** Вычислите $\operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z}/n,\mathbb{Z}/m)$ и $\operatorname{Tor}^{\mathbb{Z}}_i(\mathbb{Z}/n,\mathbb{Z}/m)$ для всех m и n;
- б) Докажите, что $\operatorname{Tor}_{1}^{\mathbb{Z}}(A,\mathbb{Z}/n)={}_{n}A=n$ -кручение(A), и $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}/n,A)=A/nA$. Убедитесь, что это обобщается на модули, если \mathbb{Z}/n заменить на R/r, где r — не делитель нуля в R. Что насчёт Tor_0 и Ext^0 ?
- в) Докажите, что $\operatorname{Tor}_1^{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z}) = \operatorname{Tors}(A);$
- г)* Докажите, что $\text{Tor}_{1}^{R}(M, S^{-1}R/R) = {}_{S}M/({}_{S}R \cdot M);$
- д) Вычислите $\operatorname{Ext}_{\mathbb{Z}/4}^{i}(\mathbb{Z}/2,\mathbb{Z}/2)$ и $\operatorname{Tor}_{i}^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2);$
- **e)** Докажите, что группа $\mathrm{Tor}_{1}^{\mathbb{Z}}(A,B)$ всегда состоит из кручения;
- $\ddot{\mathbf{e}}$)* Для кольца без делителей нуля докажите, что $\mathrm{Tor}_i^{\hat{R}}(M,N)$ всегда состоит из Rкручения для i > 0.
- **16.** Для клеточного пространства X обозначим через $(C_*^{CW}(X), \partial^{CW})$ его клеточный цепной комплекс. Докажите, что когомологии $H^*(X;M)$ можно считать с помощью коцепного комплекса $\operatorname{Hom}_{\mathbb{Z}}(C^{CW}_{\star}(X), M)$ с двойственным дифференциалом

$$\operatorname{Hom}_{\mathbb{Z}}(C_n^{CW}(X), M) \xrightarrow{(\partial_{n+1})^*} \operatorname{Hom}_{\mathbb{Z}}(C_{n+1}^{CW}(X), M)$$

- **17.** Докажите, что для конечного клеточного пространства X его эйлерова характеристика $\chi(X)$ (знакопеременная сумма количеств клеток) равна $\sum (-1)^i \dim_{\mathbb{F}} H_i(X;\mathbb{F}) =$ $\sum (-1)^i \dim_{\mathbb{F}} H^i(X; \mathbb{F}) = \sum (-1)^i \operatorname{rk} H_i(X; \mathbb{Z}) = \sum (-1)^i \operatorname{rk} F H^i(X; \mathbb{Z})$ для любого поля \mathbb{F} .
- **18.** Докажите, что если все $H_n(X; \mathbb{Z})$ являются конечно порожденными абелевыми группами, то $H^n(X;\mathbb{Z})$ — тоже. На самом деле, верно и обратное.
- **19.** Докажите, что если отображение $f: X \to Y$ индуцирует изоморфизм на гомологиях с коэффициентами в \mathbb{Q} и \mathbb{Z}/p (для всех простых p), то оно индуцирует изоморфизмы на гомологиях с целыми коэффициентами (а значит, и на (ко)гомологиях со всеми коэффициентами).
- **20.** Докажите, что если отображение $f: X \to Y$ индуцирует изоморфизм на когомологиях $f^*: H^*(X; \mathbb{Z}) \xrightarrow{\cong} H^*(Y; \mathbb{Z})$, а все гомологии $H_*(X; \mathbb{Z})$ и $H_*(Y; \mathbb{Z})$ конечно порождены (например, X и Y конечны), то f также индуцирует изоморфизм на целочисленных гомологиях (а значит, и на гомологиях и когомологиях со всеми коэффициентами). Можно доказать, что на самом деле условие конечной порождённости гомологий тут не нужно.
- 21. Приведите пример отображения, индуцирующего нулевое отображение в целочисленных гомологиях, но не в когомологиях.

Приведите пример отображения, индуцирующего нулевое отображение в целочисленных гомологиях, но не гомологиях с какими-нибудь коэффициентами.

Убедитесь, что это доказывает неестественность расщеплений в теоремах об универсальных коэффициентах.

- 22. Сформулируйте и докажите теорему Майера-Виеториса для когомологий.
- **23.** а) Для любого гомоморфизма абелевых групп $A \to B$ и любой пары пространств (X,Y) мы имеем морфизмы (ко)цепных комплексов $C_*(X,Y)\otimes_{\mathbb{Z}}A\to C_*(X,Y)\otimes_{\mathbb{Z}}B$ и $\operatorname{Hom}_{\mathbb{Z}}(C_*(X,Y),A) \to \operatorname{Hom}_{\mathbb{Z}}(C_*(X,Y),B)$, и следовательно, получаем гомоморфизмы на (ко)гомологиях: $H_n(X,Y;A) \to H_n(X,Y;B)$ и $H^n(X,Y;A) \to H^n(X,Y;B)$.

Проверьте, что получившиеся отображения являются естественными преобразованиями теорий (ко)гомологий, то есть, они естественны относительно отображений пар пространств и коммутируют с граничными отображениями в длинных точных последовательностях пар (в частности, с изоморфизмом надстройки).

Проверьте, что для любой короткой точной последовательности абелевых групп $0 \to A \to B \to C \to 0$ и любой пары пространств (X,Y) индуцированные последовательности (ко)цепных комплексов

$$0 \to C_*(X,Y) \otimes_{\mathbb{Z}} A \to C_*(X,Y) \otimes_{\mathbb{Z}} B \to C_*(X,Y) \otimes_{\mathbb{Z}} C \to 0$$

$$0 \to \operatorname{Hom}_{\mathbb{Z}}(C_*(X,Y),A) \to \operatorname{Hom}_{\mathbb{Z}}(C_*(X,Y),B) \to \operatorname{Hom}_{\mathbb{Z}}(C_*(X,Y),C) \to 0$$

точны.

Следовательно, они индуцируют длинные точные последовательности (ко)гомологий

$$\cdots \to H_n(X,Y;A) \to H_n(X,Y;B) \to H_n(X,Y;C) \to H_{n-1}(X,Y;A) \to \cdots$$

$$\cdots \to H^n(X,Y;A) \to H^n(X,Y;B) \to H^n(X,Y;C) \to H^{n+1}(X,Y;A) \to \cdots$$

Проверьте, что граничные отображения $H_n(X,Y;C) \to H_{n-1}(X,Y;A)$ и $H^n(X,Y;C) \to H^{n+1}(X,Y;A)$ также являются естественными преобразованиями теорий (ко)гомологий. Они называются гомоморфизмами Бокштейна.

б) Обычно рассматривают гомоморфизмы Бокштейна $\bar{\beta} \colon H^*(-;\mathbb{Z}/n) \to H^{*+1}(-;\mathbb{Z})$ и $\beta \colon H^*(-;\mathbb{Z}/n) \to H^{*+1}(-;\mathbb{Z}/n)$ (и аналогично в гомологиях), связанные с точными последовательностями

$$0 \to \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \to \mathbb{Z}/n \to 0$$

И

$$0 \to \mathbb{Z}/n \xrightarrow{\cdot n} \mathbb{Z}/n^2 \to \mathbb{Z}/n \to 0$$

соответственно.

Убедитесь, что ядро $\bar{\beta}$ состоит в точности из классов (ко)гомологий с коэффициентами в \mathbb{Z}/n , которые получаются из классов (ко)гомологий с коэффициентами в \mathbb{Z} с помощью редукции по модулю n. Проверьте, что $r \circ \bar{\beta} = \beta$, где r — редукция по модулю n. Выведите, что $\beta^2 = 0$.

Вычислите β и $\bar{\beta}$ на гомологиях и когомологиях пространств $\mathbb{R}P^m$ (для всех коэффициентов \mathbb{Z}/n).

24.* Рассмотрим n-листное накрытие $p: \widehat{X} \to X$. Для каждого сингулярного симплекса $\sigma: \Delta^n \to X$ мы имеем ровно n поднятий $\widehat{\sigma}_i \colon \Delta^n \to \widehat{X}$. Обозначим их сумму $\operatorname{tr}(\sigma) = \sum_i \widehat{\sigma}_i$. Это корректно определённый гомоморфизм групп $C_n(X) \to C_n(\widehat{X})$. Проверьте, что это морфизм цепных комплексов. Значит, мы получаем отображение в гомологиях $\operatorname{tr}: H_*(X;F) \to H_*(\widehat{X};F)$ (с любыми коэффициентами). Оно называется $\operatorname{mpancpepom}$. Докажите, что композиция $p_* \circ \operatorname{tr} = n \cdot \operatorname{id}$. Выведите, что если n не делится на $\operatorname{char} F$, то tr инъективен.

Если $\widehat{X} \to X$ — n-листное накрытие Галуа с группой G, то G действует на \widehat{X} , и следовательно, на гомологиях $H_*(X;F)$. Докажите, что если n=|G| не делится на char F, то im $\mathrm{tr}=H_*(X;F)^G$ — подгруппа неподвижных точек при действии группы G.

25.* Пусть пространство X представлено в виде объединения возрастающей цепочки подпространств $X_0 \subset X_1 \subset \ldots, X = \bigcup X_i$, причём любое компактное подпространство $K \subset X$ лежит в некотором X_n .

Докажите, что тогда (для каждого i) имеет место естественная короткая точная последовательность Милнора

$$0 \to \lim_{n} H^{i-1}(X_n) \to H^i(X) \to \lim_{n} H^i(X_n) \to 0$$

- **26.*** Для пространства X рассмотрим абелеву подгруппу $C_c^n(X) \subset C^n(X) = \operatorname{Hom}_{\mathbb{Z}}(C_n(X); \mathbb{Z})$, состоящую из таких сингулярных коцепей φ , для каждой из которых существует такое компактное подпространство $K_{\varphi} \subset X$, что $\varphi(\sigma) = 0$ для любого сингулярного симплекса из $X K_{\varphi}$. Убедитесь, что эти группы образуют коцепной подкомплекс в $C^*(X)$ (то есть, коцепной дифференциал сохраняет эти подгруппы). Когомологии $H_c^i(X)$ этого подкомплекса называются *когомологиями с компактными носителями*.
- а) Докажите, что такие когомологии являются контравариантным функтором относительно собственных отображений, гомотопически инвариантны относительно собственных гомотопий и для компактного X совпадают с обычными когомологиями. Докажите, что когомологии H_c^* не являются функтором относительно произвольных непрерывных отображений.
- **б)** Вычислите $H_c^*(\mathbb{R}^n)$ и $H_c^*(\mathbb{R}^n 0)$.
- в) Докажите, что имеет место «несобственный изоморфизм надстройки» $H^n_c(X)\cong H^{n+1}_c(\mathbb{R}\times X).$
- г) Докажите, что для открытого подмножества $U \subset X$ существуют естественные гомоморфизмы «продолжения нулём» $H^i_c(U) \to H^i_c(X)$.
- д) Докажите, что для клеточного пространства X и его клеточного подпространства $Z\subset X$ (на самом деле достаточно их локальной стягиваемости) существует длинная точная nocnedosame.nehocmb nokanusauuu

$$\cdots \to H_c^n(X-Z) \to H_c^n(X) \to H_c^n(Z) \to H_c^{n+1}(X-Z) \to \cdots$$

е) Докажите, что если $X\cong Y-K$, где (Y,K) — конечная клеточная пара, то $H^i_c(X)\cong H^i(Y,K)\cong H^i_c(Y/K,\mathrm{pt})$ и Y/K — одноточечная компактификация X.

Вообще, докажите, что если X = K – pt, где K — хаусдорфов компакт, причём точка pt обладает в K базой окрестностей, деформационно ретрагирующихся на эту точку, то $H^i_c(X) = H^i(K, \operatorname{pt})$.

Проверьте, что в этом случае отсюда тоже, конечно, следует точная последовательность локализации из предыдущего пункта.

 $\ddot{\mathbf{e}}$) Докажите, что для локально конечного клеточного X когомологии $H_c^*(X)$ можно вычислять с помощью клеточного коцепного комплекса пространства X, в котором рассматриваются коцепи с конечным носителем, то есть, равные нулю на всех клетках, кроме конечного числа.

Легко видеть, что определено спаривание Кронекера между когомологиями с компактными носителями и гомологиями Бореля—Мура с локально конечными носителями $H_c^n(X) \otimes_{\mathbb{Z}} H_n^{lf}(X) \to \mathbb{Z}$ (так как локально конечная цепь конечна на каждом компакте). Можно показать, что для локально конечного, не более, чем счётного, конечномерного клеточного пространства X имеет место формула универсальных коэффициентов

$$0 \to \operatorname{Ext}^1_{\mathbb{Z}}(H^{n+1}_c(X), \mathbb{Z}) \to H^{lf}_n(X) \to \operatorname{Hom}(H^n_c(X); \mathbb{Z}) \to 0$$

(заметим, что тут гомологии Бореля—Мура выражаются через когомологии с компактными носителями; в этой теории когомологии более фундаментальны и ведут себя лучше, чем гомологии). **27.*** Пусть R — ассоциативное кольцо с 1, но не обязательно коммутативное. Тогда можно определить левые и правые модули над R. Их определения аналогичны определению модуля над коммутативным кольцом, за исключением «аксиомы ассоциативности»: для левых модулей умножение на скаляры пишется слева и аксиома имеет вид $r_1 \cdot (r_2 \cdot m) = (r_1 r_2) \cdot m$, а для правых модулей умножение на скаляры пишется справа и аксиома имеет вид $(m \cdot r_1) \cdot r_2 = m \cdot (r_1 r_2)$ (Заметьте, что тут дело не только в написании скаляров слева или справа, если даже их писать слева, получатся разные аксиомы: для левых модулей — $r_1(r_2m) = (r_1 r_2)m$, а для правых модулей — $r_2(r_1m) = (r_1 r_2)m$.)

Тогда для левых модулей M и N можно определить абелеву подгруппу $\operatorname{Hom}_R(M,N) := \{ f \in \operatorname{Hom}_{\mathbb{Z}}(M,N) \mid f(rm) = rf(m) \}$ в $\operatorname{Hom}_{\mathbb{Z}}(M,N)$ (и аналогично для правых модулей).

Для правого модуля M и левого модуля N можно определить абелеву факторгруппу $M \otimes_R N := M \otimes_{\mathbb{Z}} N/(mr \otimes n - m \otimes rn).$

Убедитесь, что в этих абелевых группах, вообще говоря, нет естественной структуры R-модуля, если R некоммутативно.

Тогда можно аналогично определить проективные (левые и правые) модули, проективные резольвенты и функторы $\operatorname{Tor}_i^R(M,N)$ (для правого модуля M и левого модуля N) и $\operatorname{Ext}_R^i(M,N)$ (для одновременно левых (или правых) модулей M и N). Заметьте, что для некоммутативного R эти функторы принимают значения, вообще говоря, в абелевых группах.

Для любой группы G можно определить групповое кольцо $\mathbb{Z}[G]$, состоящее из (конечных) формальных сумм $\sum n_g g$, $n_g \in \mathbb{Z}$, и на котором умножение определяется по линейности из умножения на G.

Рассмотрим клеточное пространство X и его накрытие Галуа $\widehat{X} \to X$ с группой Галуа G. Группа G действует (слева) на \widehat{X} , и следовательно, на сингулярных цепях $C_*(\widehat{X})$, превращая их в (левый) $\mathbb{Z}[G]$ -модуль. Аналогично на $C^*(\widehat{X}) = \operatorname{Hom}_{\mathbb{Z}}(C_*(\widehat{X}), \mathbb{Z})$ возникает структура (правого) $\mathbb{Z}[G]$ -модуля.

а) Рассмотрим абелеву группу M как правый $\mathbb{Z}[G]$ -модуль с тривиальным действием: $m \cdot g = m$ для $g \in G, m \in M$. Докажите, что тогда $M \otimes_{\mathbb{Z}[G]} C_*(\widehat{X}) \cong C_*(X) \otimes_{\mathbb{Z}} M$ и $\operatorname{Hom}_{\mathbb{Z}[G]}(C_*(\widehat{X}), M) \cong \operatorname{Hom}_{\mathbb{Z}}(C_*(X), M)$ (как абелевы группы).

В частности, для универсального накрытия $\widetilde{X} \to X$ группа Галуа равна $\pi = \pi_1(X)$ и мы получаем равенства $M \otimes_{\mathbb{Z}[\pi]} C_*(\widetilde{X}) \cong C_*(X; M)$ и $\operatorname{Hom}_{\mathbb{Z}[\pi]}(C_*(\widetilde{X}), M) \cong C^*(X; M)$.

Вообще, для произвольного π -модуля M определены (ко)гомологии $H^k(X;M) := H^k(\operatorname{Hom}_{\mathbb{Z}[\pi]}(C^*(\widetilde{X}),M))$ и $H_k(X;M) := H_k(C_*(\widetilde{X}) \otimes_{\mathbb{Z}[\pi]} M)$. Они называются (ко)гомологиями с локальными коэффициентами пространства X (потому что их можно также определить в терминах (ко)гомологий пространства X с коэффициентами, зависящими от точки $x \in X$). Из предыдущего абзаца, мы получаем, что для тривиального π -действия на M они совпадают с обычными (ко)гомологиями.

- **б**) Докажите, что если рассмотреть кольцо $\mathbb{Z}[\pi]$ как одномерный свободный модуль над самим собой, то гомологии с такими локальными коэффициентами изоморфны просто $H_*(\widetilde{X}; \mathbb{Z})$. Докажите, что, если X конечно, то когомологии с коэффициентами в $\mathbb{Z}[\pi]$ изоморфны $H_c^*(\widetilde{X}; \mathbb{Z})$ (когомологиям с компактными носителями).
- в) Докажите, что $\operatorname{Ext}_{\mathbb{Z}[G]}^{k}(\mathbb{Z},\mathbb{Z}) \cong H^{k}(K(G,1);\mathbb{Z})$ и $\operatorname{Tor}_{k}^{\mathbb{Z}[G]}(\mathbb{Z},\mathbb{Z}) \cong H_{k}(K(G,1);\mathbb{Z})$
- **28.*** Пусть X связное клеточное пространство, $A \subset X$ его связное клеточное подпространство, а Y линейно связное пространство, у которого $\pi_1(Y)$ тривиально действует на $\pi_n(Y)$ для некоторого фиксированного $n \geqslant 1$ (в частности, если n = 1

1, то $\pi_1(Y)$ абелева, и в $\pi_n(Y)$ можно не писать отмеченные точки). Пусть задано отображение $f\colon A\cup X^n\to Y$, где X^n-n -остов.

Для каждой клетки e_{α}^{n+1} из X-A рассмотрим её приклеивающее отображение $\varphi_{\alpha}\colon S^n \to X^n$. Мы получаем элементы $[f_{\alpha}] = [f \circ \varphi_{\alpha}] \in \pi_n(Y)$. Тогда корректно определена клеточная коцепь $\omega(f) \in \operatorname{Hom}_{\mathbb{Z}}(C_{n+1}^{CW}(X,A),\pi_n(Y))$, переводящая клетку $[e_{\alpha}^{n+1}]$ в $[f_{\alpha}] \in \pi_n(Y)$.

- а) Убедитесь, что $\omega(f) = 0 \iff f$ можно продолжить до отображения $X^{n+1} \to Y$. Докажите, что эта коцепь $\omega(f)$ является клеточным коциклом.
- **б**) Аналогично, если заданы два отображения $f,g\colon X^n\cup A\to Y$ и их ограничения $f|_{X^{n-1}}$ и $g|_{X^{n-1}}$ гомотопны неподвижно на A, то эта гомотопия H вместе с f и g даёт отображение $X^n\times 0\cup A\times I\cup X^{n-1}\times I\cup X^n\times 1=(X\times I)^n\cup A\times I\to Y$. Применяя аналогичную конструкцию к клеткам вида $e^{n-1}_{\alpha}\times I$ для $e^{n-1}_{\alpha}\subset X-A$, мы получаем клеточную коцепь $d(f,g,H)\in C^{n-1}_{CW}(X,A;\pi_n(Y))$.

Докажите, что в таком случае $\delta d(f,g,H)=\omega(f)-\omega(g)$ ($\delta=(\partial_{CW})^*$ — клеточный коцепной дифференциал).

в) Докажите, что $[\omega(f)] = 0$ в $H^{n+1}(X, A; \pi_n(Y)) \iff$ сужение $f|_{X^{n-1}} \to Y$ продолжается до отображения $X^{n+1} \to Y$ (иными словами, f продолжается на X^{n+1} после возможного изменения на n-остове).

В частности, мы получаем следующее. Пусть даны два отображения $f,g\colon X^n\cup A\to Y$ и гомотопия H между их ограничениями $f|_{X^{n-1}}$ и $g|_{X^{n-1}}$ (неподвижная на A). Тогда мы получаем отображение $F\colon X^n\times 0\cup A\times I\cup X^{n-1}\times I\cup X^n\times 1=(X\times I)^n\cup A\times I\to Y$. Если мы хотим продолжить эту гомотопию на $X^n\times I$, то соответствующий препятствующий класс когомологий $\omega(F)$ лежит в $H^{n+1}(X\times I, X\times 0\cup A\times I\cup X\times 1; \pi_n(Y))\cong H^{n+1}(X\times I/(X\times 0\cup A\times I\cup X\times 1); \pi_n(Y))=H^{n+1}(\Sigma X/\Sigma A; \pi_n(Y))=H^{n+1}(\Sigma (X/A); \pi_n(Y))\cong H^n(X,A;\pi_n(Y))$. Таким образом мы получили класс $\omega(F)\in H^n(X,A;\pi_n(Y))$ и он равен нулю \iff ограничение гомотопии $H|_{X^{n-2}\times I}$ продолжается до гомотопии между f и g (неподвижной на A).

г) Рассмотрим пространство Эйленберга—Маклейна K(A,n) с абелевой A. Убедитесь, что из теорем Гуревича и об универсальных коэффициентах следует, что имеется канонический изоморфизм $H^n(K(A,n);A) \cong \operatorname{Hom}_{\mathbb{Z}}(A,A)$. Рассмотрим элемент $\iota_A^n \in H^n(K(A,n);A)$, соответствующий при этом изоморфизме $\operatorname{id}_A \in \operatorname{Hom}_{\mathbb{Z}}(A,A)$. Тогда для любого X корректно определено естественное отображение множеств

$$[X,K(A,n)] \to H^n(X;A), \quad [f] \mapsto f^*(\iota_A^n)$$

Докажите, что для клеточного X это отображение является биекцией.

Кроме того, так как пространство K(A,n) слабо эквивалентно $\Omega K(A,n+1)$ (задача 10 второго листочка), то для любого клеточного пространства X имеет место биекция $[X,K(A,n)]\cong [X,\Omega K(A,n+1)]$ (задача 7 второго листочка). Но на множестве справа есть естественная структура группы, приходящая из умножения на пространстве петель. То есть, мы получаем естественную структуру группы на множестве [X,K(A,n)]. д) Докажите, что биекция $[X,K(A,n)]\to H^n(X;A)$ является изоморфизмом групп.