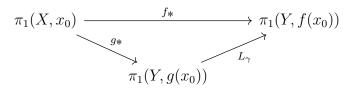
ТОПОЛОГИЯ-1

ЛИСТОЧЕК 7: ФУНДАМЕНТАЛЬНАЯ ГРУППА

ЛЕКТОР: Г. С. ЧЕРНЫХ

- **1.** Докажите, что включение компоненты линейной связности $X_0 \hookrightarrow X$ точки x_0 индуцирует изоморфизм $\pi_1(X_0, x_0) \cong \pi_1(X, x_0)$.
- **2.** Пусть X линейно связное пространство.
- а) Докажите, что X односвязно \Leftrightarrow для любых двух точек $x, y \in X$ любые два пути между ними гомотопны (с закреплёнными концами).
- **б)** Докажите, что $\pi_1(X)$ абелева \Leftrightarrow изоморфизмы $L_\gamma \colon \pi_1(X, x_1) \to \pi_1(X, x_0)$ не зависят от пути γ , соединяющего точки x_0 и x_1 .
- **3.** Проверьте, что если отображения $f, g: X \to Y$ гомотопны, то диаграмма



коммутативна, где γ — путь между $f(x_0)$ и $g(x_0)$, по которому двигается образ точки x_0 при гомотопии, связывающей f и g.

4. Заметим, что для пространства X с выделенной точкой x_0 множество его компонент линейной связности $\pi_0(X)$ тоже обладает выделенной точкой — компонентой связности, содержащей x_0 . Будем обозначать это множество с отмеченной точкой как $\pi_0(X,x_0)$.

Рассмотрим топологическое пространство X, его подпространство $A \subset X$ и их общую выделенную точку $x_0 \in A \subset X$. Мы имеем естественные отображения, индуцированные вложениями: гомоморфизм групп $\pi_1(A, x_0) \to \pi_1(X, x_0)$ и отображение множеств $\pi_0(A, x_0) \to \pi_0(X, x_0)$, сохраняющее отмеченные точки.

Рассмотрим также множество $\pi_1(X,A)$, состоящее из классов гомотопии путей $\gamma\colon I\to X$, таких что $\gamma(0)=x_0$ и $\gamma(1)\in A$. Это множество тоже обладает отмеченной точкой — постоянным путём $const_{x_0}$.

Заметим, что в случае $A = \{x_0\}$ мы получаем $\pi_1(X, x_0)$. Проверьте, что $\pi_1(X, A) = \pi_0(P(X, A, x_0))$, где $P(X, A, x_0)$ — пространство путей в X, начинающихся в x_0 и заканчивающихся в A. Мы имеем естественное отображение $\pi_1(X, x_0) \to \pi_1(X, A)$.

Рассмотрим также естественное отображение множеств с отмеченными точками ∂ : $\pi_1(X,A) \to \pi_0(A)$, $\partial([\gamma]) = [\gamma(1)]$, переводящее класс гомотопии пути в компоненту подпространства A, содержащую его конец.

Докажите, что последовательность

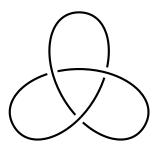
$$\pi_1(A, x_0) \to \pi_1(X, x_0) \to \pi_1(X, A) \xrightarrow{\partial} \pi_0(A, x_0) \to \pi_0(X, x_0)$$

является moчнoй, то есть, для каждых двух последовательных отображений $\bullet \xrightarrow{f} \bullet \xrightarrow{g} \bullet$ прообраз отмеченной точки g^{-1} (отмеченная точка) совпадает со всем образом отображения f, то есть, $\mathrm{Im}\, f = g^{-1}$ (отмеченная точка) (в частности, композиция любых двух последовательных отображений совпадает с постоянным отображением в отмеченную точку).

Более того, докажите, что существует такое (левое) действие группы $\pi_1(X, x_0) \curvearrowright \pi_1(X, A)$, что в действительности прообразы точек при отображении ∂ совпадают с орбитами этого действия (то есть, $\partial([\gamma_1]) = \partial([\gamma_2]) \Leftrightarrow \gamma_1 \sim \omega \cdot \gamma_2$ для некоторой петли ω). Проверьте, что образ отображения $\pi_1(X, x_0) \to \pi_1(X, A)$ — это орбита отмеченной точки, поэтому это действительно уточнение результата о точности.

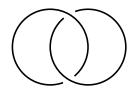
Аналогично докажите, что прообразы точек при отображении $\pi_1(X, x_0) \to \pi_1(X, A)$ совпадают с орбитами (правого) действия $\pi_1(A, x_0) \curvearrowright \pi_1(X, x_0)$, где подразумевается действие умножением справа посредством гомоморфизма групп $\pi_1(A, x_0) \to \pi_1(X, x_0)$ (то есть, мы рассматриваем петлю в A как петлю в X и умножаем на неё справа в $\pi_1(X, x_0)$). Аналогично, образ отображения $\pi_1(A, x_0) \to \pi_1(X, x_0)$ — это орбита отмеченной точки (единицы группы).

- **5.** В этой задаче мы будем считать известным, что фундаментальная группа окружности изоморфна \mathbb{Z} с образующей, заданной однократным обходом (в какуюлибо сторону).
- а) Рассмотрим букет двух окружностей $S^1 \vee S^1$. Фундаментальная группа этого букета свободная группа на двух образующих F(a,b), где a обход одной окружности, а b другой. Приклеим к этому букету две двумерные клетки: по петлям соответствующим словам a^5b^{-3} и $b^3(ab)^{-2}$. Вычислите фундаментальную группу получившегося двумерного комплекса X. Тривиальна ли она? Чему равна её абелинизация?
- **б**) Вычислите фундаментальную группу дополнения \mathbb{R}^3-S^1 до стандартно вложенной окружности. Что насчёт дополнения S^3-S^1 ?
- в) Вычислите фундаментальную группу дополнения $\mathbb{R}^3 K$ до узла трилистника.



Коммутативна ли она? Чему равна её абелинизация? Что насчёт дополнения S^3-K ?

- г) Чему равна фундаментальная группа дополнения в \mathbb{R}^3 до k прямых, проходящих через одну точку?
- д) Вычислите фундаментальную группу поверхности M_g (сферы с g ручками), из которой удалили конечное число точек. Аналогично для неориентированной поверхности N_g (связной суммы g копий проективной плоскости).
 - e) Вычислите фундаментальную группу $\mathbb{R}P^n$ (не используя накрытия).
- $\ddot{\mathbf{e}}$) Докажите, что фундаментальная группа группы $GL_n(\mathbb{C})$ содержит прямое слагаемое \mathbb{Z} .
- **ж**) Чему равна фундаментальная группа дополнения до двух незацепленных окружностей в \mathbb{R}^3 ? А в S^3 ? Какая у этих групп абелинизация?
- $\mathbf{3}$) Чему равна фундаментальная группа дополнения до зацепления Хопфа в \mathbb{R}^3 ? А в S^3 ? Какая у этих групп абелинизация?



- **6.** Существует ли ретракция ленты Мёбиуса на край? А ретракция полнотория на граничный тор? Существуют ли отображения этих пространств в себя без неподвижных точек?
- 7. Гомеоморфен ли цилинд
р $S^1\times I$ ленте Мёбиуса? А гомотопически эквивалентен ли?
- 8. Для пространства (X, x_0) с отмеченной точкой и пространства Y рассмотрим отображение $f: (X, x_0) \to (Y, y_0)$ и путь $\gamma: (I, \{0, 1\}) \to Y, \ \gamma(0) = y_0, \ \gamma(1) = y_1$. Если точка $x_0 \in X$ невырожденна, то составное отображение $X \times 0 \cup x_0 \times I \xrightarrow{f \cup \gamma} Y$ можно продолжить до отображения $F: X \times I \to Y$, которое даёт новое отображение $F|_{X \times 1}: (X, x_0) \to (Y, y_1)$.
- а) Проверьте, что эта конструкция даёт корректный изоморфизм L_{γ} : $[(X,x_0),(Y,y_0)] \rightarrow [(X,x_0),(Y,y_1)]$, не зависящий от выбора продолжения гомотопии F и зависящий только от класса гомотопии пути $[\gamma]$, причём $L_{\gamma_1} \circ L_{\gamma_2} = L_{\gamma_2\gamma_1}$ (сравните с изоморфизмами L_{γ} между фундаментальными группами).

В частности, мы получаем действие группы $\pi_1(Y, y_0)$ на множестве $[(X, x_0), (Y, y_0)]$. При $X = S^1$ что это за действие $\pi_1(Y, y_0)$ на себе?

- **б)** Докажите, что отображение $g: X \to Y$ гомотопно отображению, сохраняющему отмеченные точки $\Leftrightarrow g(x_0)$ лежит в компоненте линейной связности точки y_0 . В частности, если Y линейно связно, то естественное отображение $[(X, x_0), (Y, y_0)] \to [X, Y]$, забывающее про отмеченные точки, сюръективно.
- в) Докажите, что два класса $[f], [g] \in [(X, x_0), (Y, y_0)]$ переходят в один и тот же класс в $[X, Y] \Leftrightarrow [f]$ и [g] лежат в одной орбите действия $\pi_1(Y, y_0)$. В частности, если Y односвязно, то естественное отображение $[(X, x_0), (Y, y_0)] \to [X, Y]$ биективно. Выведите, что Y односвязно \Leftrightarrow множество $[S^1, Y]$ (непунктированных классов гомотопии) состоит из одной точки.
- г) Убедитесь, что предыдущие пункты равносильны точности последовательности множеств с отмеченными точками

$$\pi_1(Y, y_0) \to [(X, x_0), (Y, y_0)] \to [X, Y] \to \pi_0(Y, y_0)$$

(с уточнением про то, что прообразы отмеченной точки среднего отображения совпадают с орбитами действия $\pi_1(Y, y_0) \curvearrowright [(X, x_0), (Y, y_0)]$, аналогично задаче 4).

9. Пространство X называется H-пространством, если в нём выбрана отмеченная точка $e \in X$ («единица») и задано отображение $\mu \colon X \times X \to X$ («умножение»), такие что отображения $X \xrightarrow{x \mapsto \mu(e,x)} X$ и $X \xrightarrow{x \mapsto \mu(x,e)} X$ гомотопны тождественному отображению id: $X \to X$. H-пространство называется nyнктированным, если отображение μ и гомотопии сохраняют отмеченные точки (то есть, $\mu(e,e) = e$ и гомотопии $\mu(e,x) \sim x \sim \mu(x,e)$ неподвижны при x=e).

H-пространство называется H-моноидом, если отображения $X \times X \times X \xrightarrow{\mu \times \mathrm{id}} X \times X \xrightarrow{\mu} X$ и $X \times X \times X \xrightarrow{\mathrm{id} \times \mu} X \times X \xrightarrow{\mu} X$ гомотопны («ассоциативность»). Аналогично для пунктированного случая (только все гомотопии, конечно, сохраняют отмеченные точки).

H-моноид называется H-группой, если ещё задано отображение $\nu\colon X\to X$ («взятие обратного элемента»), такое что отображения $X\xrightarrow{\operatorname{id}\times\nu} X\times X\xrightarrow{\mu} X$ и $X\xrightarrow{\nu\times\operatorname{id}} X\times X\xrightarrow{\mu} X$ гомотопны отображению в точку $X\to e\in X$ (и аналогично для пунктированного случая).

- а) Проверьте, что любая топологическая группа и любое пространство петель являются (пунктированными) H-группами. Докажите, что пространство $\mathbb{C}P^{\infty}$ является H-группой. Определите, что значит, что H-пространство является гомотопически коммутативным и докажите, что пространство вторых петель $\Omega(\Omega X)$ всегда гомотопически коммутативно. Является ли гомотопически коммутативной H-группа $\mathbb{C}P^{\infty}$.
- **б**) Докажите, что пространство X является H-пространством тогда и только тогда, когда для любого пространства Y множество [Y,X] можно снабдить таким умножением с единицей, что для любого отображения $f\colon Y_1\to Y_2$ индуцированное отображение $f_X^*\colon [Y_2,X]\to [Y_1,X]$ является гомоморфизмом и переводит единицу в единицу. Аналогично для H-моноидов и H-групп, а также пунктированного случая.

Например, для H-группы X множество $\pi_0(X) = [pt, X]$ является группой.

в) Докажите, что (непустых) непунктированных ко-H-пространств не существует, то есть, не существует таких пространств X, что для любого пространства Y множество [X,Y] можно снабдить таким умножением с единицей, что для любого отображения $f\colon Y_1\to Y_2$ индуцированное отображение $f_*^X\colon [X,Y_1]\to [X,Y_2]$ является гомоморфизмом и переводит единицу в единицу.

Ko-H-пространством называется пространство X вместе с отмеченной точкой $e \in X$ («коединицей») и (сохраняющим отмеченные точки) отображением $\mu \colon X \to X \lor X$ («коумножением»), такими что композиции $X \xrightarrow{\mu} X \lor X \xrightarrow{\operatorname{const}_e \lor \operatorname{id}} X$ и $X \xrightarrow{\mu} X \lor X \xrightarrow{\operatorname{id} \lor \operatorname{const}_e} X$ гомотопны тождественному отображению $\operatorname{id} \colon X \to X$ (гомотопии сохраняют отмеченные точки).

Ко-H-пространство называется H-комонои ∂ ом, если отображения $X \xrightarrow{\mu} X \lor X \xrightarrow{\mu \lor \mathrm{id}} X \lor X \lor X$ и $X \xrightarrow{\mu} X \lor X \xrightarrow{\mathrm{id} \lor \mu} X \lor X \lor X$ гомотопны с сохранением отмеченных точек («коассоциативность»).

H-комоноид называется H-когруппой, если ещё задано отображение $\nu\colon X\to X$ («взятие кообратного элемента»), такое что отображения $X\xrightarrow{\mu} X\vee X\xrightarrow{\mathrm{id}\vee\nu} X$ и $X\xrightarrow{\mu} X\vee X\xrightarrow{\nu\times\mathrm{id}} X$ пунктированно гомотопны отображению в точку $\mathrm{const}_e\colon X\to e\in X.$

- г) Докажите, что любая приведённая надстройка $\Sigma_{\bullet}X$ является H-когруппой. Определите, что значит, что ко-H-пространство является гомотопически кокоммутативным и докажите, что вторая надстройка $\Sigma_{\bullet}(\Sigma_{\bullet}X)$ всегда гомотопически кокоммутативна.
- д) Докажите, что пространство X является ко-H-пространством тогда и только тогда, когда для любого пунктированного пространства Y множество $[X,Y]_*$ можно снабдить таким умножением с единицей, что для любого отображения $f\colon Y_1\to Y_2$ индуцированное отображение $f_*^X\colon [X,Y_1]_{\bullet}\to [X,Y_2]_{\bullet}$ является гомоморфизмом и переводит единицу в единицу. Аналогично для H-комоноидов и H-когрупп.
- е) Таким образом, мы получаем структуры группы на множествах $[\Sigma_{\bullet}X, Y]_{\bullet}$ и $[X, \Omega Y]_{\bullet}$. Докажите, что естественная биекция $[\Sigma_{\bullet}X, Y]_{\bullet} \cong [X, \Omega Y]_{\bullet}$ является изоморфизмом групп.

 $\ddot{\mathbf{e}}$) Для ко-H-пространства X и (пунктированного) H-пространства Y мы получаем два умножения с единицей на множестве $[X,Y]_{\bullet}$. Докажите, что эти умножения совпадают и коммутативны.

В частности, групповые структуры на $[\Sigma_{\bullet}X, \Omega Y]_{\bullet}$ совпадают и коммутативны. Например, группа $\pi_1(X, e)$ абелева для любого пунктированного H-пространства X

Выведите из предыдущего, что для пунктированного пространства (X, x_0) на множестве $\pi_n(X, x_0) := [S^n, X]_{\bullet}$ $(n \ge 2)$ существует естественная структура абелевой группы, причём $\pi_n(X, x_0) \cong \pi_{n-1}(\Omega X, c_{x_0})$. Группы $\pi_n(X, x_0)$ называются гомотопическими группами пространства X.

ж) Проверьте, что для любых невырожденно пунктированного ко-H-пространства X (с отмеченной коединицей) и пунктированного Y фундаментальная группа $\pi_1(Y)$ действует на $[X,Y]_{\bullet}$ гомоморфизмами.

В частности, группа $\pi_1(X, x_0)$ действует гомоморфизмами (какими?) на себе, а также на абелевых группах $\pi_n(X, x_0)$, $n \ge 2$ (в таком случае говорят, что гомотопические группы $\pi_n(X, x_0)$ являются $\pi_1(X, x_0)$ -модулями). Как следует из следующего пункта — это действие тривиально для H-пространства X.

з) Проверьте, что для любых невырожденно пунктированного пространства X и пунктированного H-пространства Y (с отмеченной единицей) действие $\pi_1(Y) \curvearrowright [X,Y]_{\bullet}$ тривиально.

В частности, если H-пространство Y линейно связно, то $[X,Y]_{\bullet} \cong [X,Y]$.

- и) Докажите, что если единица H-пространства (X, μ, e) является невырожденной отмеченной точкой, то умножение μ гомотопно (пунктированно) такому отображению μ' , что (X, μ', e) пространство со строгой единицей (то есть, $\mu'(x, e) = x = \mu'(e, x)$). Причём, если (X, μ, e) было H-моноидом, то и (X, μ', e) будет H-моноидом. А если (X, μ, e, ν) было H-группой, то существует также такое ν' , что оно гомотопно ν и (X, μ', e, ν') H-группа.
- **10. а)** Приведите пример такого покрытия X двумя открытыми линейно связными A и B, что гомоморфизм $\pi_1(A,c) *_{\pi_1(C,c)} \pi_1(B,c) \to \pi_1(X,c)$ не является сюръективным (здесь $c \in C = A \cap B$).
- **б)** Приведите пример такого покрытия X тремя открытыми линейно связными A, B и C, что все попарные пересечения линейно связны, но гомоморфизм $\pi_1(A,c) *_{\pi_1(C,c)} \pi_1(B,c) \to \pi_1(X,c)$ не является инъективным (здесь $c \in C = A \cap B$).
- **11.** Докажите, что свободное произведение $\mathbb{Z}/2*\mathbb{Z}/3$ изоморфно группе $PSL_2(\mathbb{Z}) := SL_2(\mathbb{Z})/\{\pm E\}$.
- **12.** Докажите, что если подмножество $X \subset \mathbb{R}^n$ является объединением таких выпуклых открытых подмножеств A_{α} , что все пересечения $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ непусты, то X односвязно.
- **13.** Пусть пространство X представлено в виде объединения двух открытых линейно связных подмножеств A и B с непустым пересечением C (не обязательно связным). Пусть пересечение C является дизъюнктным объединением конечного числа своих открытых компонент линейной связности.

Выберем одну из этих компонент и обозначим её через C_0 , а остальные — через C_{α} . Выберем точки $c_0 \in C_0$, $c_{\alpha} \in C_{\alpha}$ и пути γ_{α}^A и γ_{α}^B , соединяющие точки c_0 и c_{α} в линейно связных множествах A и B соответственно. Обозначим через $F(h_{\alpha})$ свободную группу порождённую элементами h_{α} (находящимися в биекции с компонентами C_{α}).

Тогда естественные гомоморфизмы $\pi_1(A, c_0) \to \pi_1(X, c_0)$ и $\pi_1(B, c_0) \to \pi_1(X, c_0)$ и гомоморфизм $F(h_\alpha) \to \pi_1(X, c_0)$, переводящий h_α в петлю $\gamma_\alpha^A(\gamma_\alpha^B)^{-1}$ индуцируют гомоморфизм

$$\Phi \colon \pi_1(A, c_0) * \pi_1(B, c_0) * F(h_\alpha) \to \pi_1(X, c_0)$$

Докажите, что Ф сюръективен.

Для $x \in \pi_1(C_\alpha, c_\alpha)$ обозначим через $a(x) = \gamma_\alpha^A \iota_*^A(x) (\gamma_\alpha^A)^{-1} \in \pi_1(A, c_0)$ и $b(x) = \gamma_\alpha^B \iota_*^B(x) (\gamma_\alpha^B)^{-1} \in \pi_1(B, c_0)$, где $\iota^A \colon C \hookrightarrow A$ и $\iota^B \colon C \hookrightarrow B$ — вложения. Докажите, что кег Φ является нормальной подгруппой, порождённой словами $a(x)(h_\alpha b(x)h_\alpha^{-1})^{-1}$ для $x \in \pi_1(C_\alpha, c_\alpha)$ и словами $\iota_*^A(x)(\iota_*^B(x))^{-1}$ для $x \in \pi_1(C_0, c_0)$.

В частности, если A и B односвязны, то $\pi_1(X)$ свободна. Верно ли это для объединения трёх односвязных открытых подмножеств?

- **14.** Приведите пример такого отображения $f: X \to Y$ между линейно связными пространствами, что $f_*: \pi_1(X) \to \pi_1(Y)$ изоморфизм, но не существует отображения $g: Y \to X$, индуцирующего изоморфизм на фундаментальных группах.
- **15.** Для топологического пространства X обозначим через X_c множество X с топологией, универсальной для всех непрерывных отображений $K \to X$ из компактных пространств (то есть, $U \subset X$ открыто в $X_c \Leftrightarrow$ для любого компакта K и любого непрерывного отображения $f \colon K \to X$ прообраз $f^{-1}(U)$ открыт в K). Проверьте, что отображение id: $X_c \to X$ непрерывно. Докажите, что это отображение является гомеоморфизмом для компактных и клеточных пространств. Докажите, что это отображение всегда индуцирует биекции $[K, X_c] \stackrel{\cong}{\to} [K, X]$ для любых компактов K и аналогично с любыми отмеченными точками (в частности, оно индуцирует биекции на π_0 и π_1).
- **16.** Проверьте, что для любых линейно связных компакта K и клеточного пространства X и отображения $f\colon K\to X$ между ними образ $f_*\colon \pi_1(K)\to \pi_1(X)$ конечно порождён. В частности, любой компакт с не конечно порождённой фундаментальной группой не может быть гомотопически эквивалентен клеточному пространству. Приведите пример такого компакта.
- **17.** Докажите, что если X линейно связно, то X * Y односвязно.
- **18. а)** Докажите, что для любого линейно связного открытого множества $U \subset \mathbb{R}^n$ фундаментальная группа $\pi_1(U)$ не более чем счётна.
- **б)** Докажите, что для любого хаусдорфова компактного локально односвязного пространства X фундаментальная группа $\pi_1(X,x)$ конечно порождена (для любой точки $x \in X$).
- в) Докажите, что пространство $\mathbb{R}^2 \mathbb{Q}^2$ линейно связно и его фундаментальная группа несчётна.
- г) Докажите, что группа $\pi_1(\mathbb{R}^2 C)$ счётна, где C канторово множество на оси абсцисс y = 0.
- д) Докажите, что при $n \geqslant 3$ дополнение $\mathbb{R}^n X$ до любого замкнутого дискретного подмножества X односвязно.