Problems III (22.02.2012)
III.1. Prove that $D^{n} / \partial D^{n} \approx S^{n}$.
III.2. Prove that the space $S^{1} \times S^{1}$ is homeomorphic to the space obtained by the following identication of points of the square $0 \leq x, y \leq 1$ belonging to its sides: $(x, 0) \sim(x, 1)$ and $(0, y) \sim$ $(1, y)$. (This space is called the torus.)
III.3. Prove that the following spaces are homeomorphic:
(a) the set of lines in \mathbb{R}^{n+1} passing through the origin;
(b) the sphere S^{n} with identified diametrically opposite points (every pair of diametrically opposite points is identified);
(c) the disc D^{n} with diametrically opposite points of the boundary sphere $S^{n-1}=\partial D^{n}$ identified.
III.4. Prove that the following spaces are homeomorphic:
(a) the set of complex lines in \mathbb{C}^{n+1} passing through the origin;
(b) the sphere $S^{2 n+1} \subset \mathbb{C}^{n+1}$ with identified points of the form λx for every $\lambda \in \mathbb{C},|\lambda|=1$ (for any fixed point $x \in S^{2 n+1}$);
(c) the disc $D^{2 n} \subset \mathbb{C}^{n}$ with points of the boundary sphere $S^{2 n-1}=\partial D^{2 n}$ of the form λx for every $\lambda \in \mathbb{C},|\lambda|=1$ identified (for any fixed point $x \in S^{2 n-1}$).
III.5. Prove that $C D^{n} \approx D^{n+1}$ and $\Sigma D^{n} \approx D^{n+1}$.
III.6. Prove that $C S^{n} \approx D^{n+1}$ and $\Sigma S^{n} \approx S^{n+1}$.
III.7. Prove that $\mathbb{R} P^{1} \approx S^{1}$ and $\mathbb{C} P^{1} \approx S^{2}$.
III.8. Prove that $S^{n} * S^{m} \approx S^{n+m+1}$.
III.9. Prove that $\mathbb{R}^{n} \backslash \mathbb{R}^{k} \approx S^{n-k-1} \times \mathbb{R}^{k+1}$, где $\mathbb{R}^{k} \subset \mathbb{R}^{n}$ is the set $\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right\}$.
III.10. Prove that $S^{n+m-1} \backslash S^{n-1} \approx \mathbb{R}^{n} \times S^{m-1}$ where $S^{n-1} \subset S^{n+m-1}$ is standard: $S^{n+m-1}=$ $\left\{\left(x_{1}, \ldots, x_{n+m}\right) \mid x_{1}^{2}+\cdots+x_{n+m}^{2}=1\right\}$ and $S^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right) \mid x_{1}^{2}+\cdots+x_{n}^{2}=1\right\}$.
III.11. Prove that $\left(S^{p} \times S^{q}\right) /\left(S^{p} \vee S^{q}\right) \approx S^{p+q}$.
III.12. Prove that $T^{2} \# \mathbb{R} P^{2} \approx 3 \mathbb{R} P^{2}$.
III.13. (a) Prove that $\mathrm{Kl} \# \mathrm{Kl}$ is homeomorphic to the Klein bottle with one handle attached.
(b) Prove that $\mathbb{R} P^{2} \# \mathrm{Kl}$ is homeomorphic to the projective plane with one handle attached.
III.14. Prove that if a surface M_{1} is nonorientable, then for any surface M_{2} the surface $M_{1} \# M_{2}$ is nonorientable.
III.15. (a) Prove that the two surfaces-with-holes obtained from the same closed triangulated surface by removing two different open 2 -simplices from it are homeomorphic.
(b) Show that the connected sum of surfaces is well defined.
III.16. Let $I=[0,1]$. Prove that the space $S^{1} \times I$ is not homeomorphic to the Möbius band.

