2. TOPOLOGICAL AND METRIC SPACES

Problem 1. Prove that (a) a closed subspace of a compact topological space is compact; (b) a compact subspace of a Hausdorff space is closed; (c) the image of a compact space under a continuous map is compact.

Problem 2. Let $A \subset \mathbb{R}^{n}$ be a closed subset, let $C \subset \mathbb{R}^{n}$ be a compact subset. Prove that there exists a point $c_{0} \in C$ such that $d(A, C)=d\left(A, c_{0}\right)$. Further, prove that if the set A is also compact, then there exists a point $a_{0} \in A$ such that $d(A, C)=d\left(a_{0}, c_{0}\right)$. Show that if A and C are closed but not compact then both statements may be false.

Hint. A subset $K \subset \mathbb{R}$ is compact if and only if it is bounded and closed. Now combine 1(c) with Problem 1.5.
Problem 3. (a) Prove that the topological space $\Delta \stackrel{\text { def }}{=}\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n} \geq 0, x_{1}+\cdots+x_{n}=1\right\}$ is compact and the function $f: \Delta \rightarrow \mathbb{R}$ given by the formula $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \ldots x_{n}$ is continuous. (The topology of Δ is inherited from \mathbb{R}^{n}.) (b) Prove that the function f achieves its maximum at the point $(1 / n, 1 / n, \ldots, 1 / n)$. Prove that for all $z_{1}, \ldots, z_{n} \geq 0$ the inequality $\sqrt[n]{z_{1} \ldots z_{n}} \leq\left(z_{1}+\cdots+z_{n}\right) / n$ holds.

Problem 4. Prove that (a) the image of a connected space under a continuous map is connected; (b) the same, for path connectedness; (c) an open subset in \mathbb{R}^{n} is connected if and only if it is path connected.

Problem 5. (a) Prove that the topological space $\mathrm{SO}(3)$ is path connected. (b) Prove that the topological space $\mathrm{GL}(n, \mathbb{R})$ is not path connected. (c) Prove that the topological space $\mathrm{GL}(n, \mathbb{R})$ is a disjoint union of two path connected components.
Problem 6. A set $A \subset \mathbb{R}^{2}$ is a union $B \cup C$ where B is a unit circle centered at the origin, and C is given in polar coordinates (r, φ) by the equation $r=\varphi /(1+\varphi), 0 \leq \varphi<\infty$. Prove that A is connected but not path connected.

Problem 7. Prove that (a) $d(x, y)=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$, (b) $d(x, y)=\sum_{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, is a metric in \mathbb{R}^{n}.
Problem 8. For a rational number $x \in \mathbb{Q}, x \neq 0$, denote by $\|x\|_{2}$ the number 2^{-k} where k is an integer (positive, negative or zero) such that $x=2^{k} \frac{m}{n}$ where $m, n \in \mathbb{Z}$ are odd. Take also $\|0\|_{2}=0$ by definition. (a) Prove that $d(x, y)=\|x-y\|_{2}$ is a metric in \mathbb{Q}; denote the metric space obtained \mathbb{Q}_{2}. (b) Is \mathbb{Q}_{2} compact? (c) Is the subspace $\mathbb{Z} \subset \mathbb{Q}_{2}$ compact? (d) What subsets of \mathbb{Q}_{2} are connected?

Let $\left\langle l_{1}, l_{2}, \ldots, l_{n-1} ; d\right\rangle$ be a plane hinge mechanism that consists of n rods, one of which is fixed and the other rods (together with the fixed rod) form a closed polygonal line, with fixed rod of length d and moving rods of lengths $l_{1}, l_{2}, \ldots, l_{n-1}$ numbered successively.
Problem 9. Find the configuration spaces of the following quadrangles: (a) $\langle 1,1,1 ; 2.9\rangle$; (b) $\langle 1,1,1 ; 1\rangle$; (c) $\langle 2,3,2 ; 3\rangle$.

